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Abstract
Hyperglycemia impairs oxidative capacity in skeletal muscle. Muscle oxidative capacity is 
regulated by PGC-1α. Transcutaneous carbon dioxide (CO2) enhances PGC-1α in skeletal muscle. 
Therefore, the aim of this study was to clarify the effects of CO2 therapy on muscle oxidative 
capacity impaired by streptozotocin (STZ)-induced hyperglycemia. Eight-week-old male Wistar rats
were randomly divided into 4 groups: control, CO2 treatment, STZ-induced hyperglycemia, and 
STZ-induced hyperglycemia treated with CO2 treatment groups. STZ-induced hyperglycemia 
resulted in a decrease of muscle oxidative capacity and the expression levels of PGC-1α and COX-



4. Application of Transcutaneous CO2 attenuated the decrease in muscle oxidative capacity and the 
expression levels of PGC-1α and COX-4, and enhanced the expression levels of eNOS. These 
results indicate that transcutaneous CO2 improve the impaired muscle oxidative capacity via an 
enhancement of eNOS and PGC-1α-related signaling in the skeletal muscle of hyperglycemia.
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Abstract 31 

Hyperglycemia impairs oxidative capacity in skeletal muscle. Muscle oxidative capacity is 32 

regulated by peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α). 33 

Transcutaneous carbon dioxide (CO2) enhances PGC-1α expression in skeletal muscle. 34 

Therefore, the aim of this study was to clarify the effects of CO2 therapy on muscle oxidative 35 

capacity impaired by streptozotocin (STZ)-induced hyperglycemia. Eight-week-old male 36 

Wistar rats were randomly divided into 4 groups: control, CO2 treatment, STZ-induced 37 

hyperglycemia, and STZ-induced hyperglycemia treated with CO2. STZ-induced 38 

hyperglycemia resulted in a decrease of muscle oxidative capacity and decreased PGC-1α and 39 

cytochrome c oxidase subunit 4 (COX-4) expression levels; while, application of 40 

transcutaneous CO2 attenuated this effect, and enhanced the expression levels of endothelial 41 

nitric oxide synthesis (eNOS). These results indicate that transcutaneous CO2 improves 42 

impaired muscle oxidative capacity via enhancement of eNOS and PGC-1α-related signaling 43 

in the skeletal muscle of rats with hyperglycemia. 44 
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Abbreviations 47 

PGC-1α, peroxisome proliferator-activated receptor-γ co-activator-1α; CO2, carbon dioxide; 48 

eNOS, endothelial nitric oxide synthesis; GAPDH, glyceraldehyde-3-phosphate 49 

dehydrogenase; cGMP, cyclic guanosine monophosphate; SIRT1, sirtuin1; COX-4, 50 

cytochrome c oxidase subunit 4; STZ, streptozotocin; CON, control; CS, citrate synthase; 51 

PBST, phosphate-buffered saline with 0.1% Tween 20. 52 

53 
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Introduction 54 

Hyperglycemia induces widespread tissue dysfunction and deleterious complications 55 

(Blake and Trounce 2014). Especially, hyperglycemia impairs not only muscle protein 56 

synthesis but also oxidative capacity in the skeletal muscle (Py et al. 2002; Frier et al. 2008; 57 

Fortes et al. 2015; Ono et al. 2015). Muscle oxidative capacity is an important factor 58 

determining exercise capacity (Adams and Schuler 2011). It is critically regulated by 59 

mitochondrial function represented by adenosine triphosphate synthesis through the 60 

tricarboxylic acid cycle. Muscle oxidative capacity depends on mitochondrial enzymatic 61 

activity and biogenesis (Short et al. 2003; White and Schenk 2012), both of which are 62 

decreased by hyperglycemia in diabetes (Patti et al. 2003; Boushel et al. 2007; Fujimaki and 63 

Kuwabara 2017; Wang et al. 2018), leading to the decrement of exercise capacity. Therefore, 64 

attenuation of hyperglycemia- induced impairment of muscle oxidative capacity is important 65 

to maintain exercise capacity. 66 

Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is known as a 67 
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master regulator of oxidative capacity in the skeletal muscle (Wende et al. 2005; Calvo et al. 68 

2008; Wenz et al. 2009; Tadaishi et al. 2011), and regulates mitochondrial enzymatic activity 69 

and biogenesis (Ventura-Clapier et al. 2008). Indeed, in a previous study, PGC-1α transgenic 70 

mice showed an increase in muscle oxidative capacity (Lin et al. 2002) In addition, endurance 71 

exercise induced an increase in muscle oxidative capacity via an increase in PGC-1α 72 

expression (Russell et al. 2003; Geng et al. 2010). These reports strongly suggest that PGC-1α 73 

plays a key role in enhancing muscle oxidative capacity. On the other hand, a decrease in 74 

PGC-1α expression has been shown to lower muscle oxidative capacity. (Leone et al. 2005; 75 

Vainshtein et al. 2015). It has been reported that low muscle oxidative capacity in diabetes is 76 

associated with decreased PGC-1α expression (Nagatomo et al. 2011 2011; Wang et al. 2018). 77 

Therefore, it would be beneficial to attenuate the decrease in PGC-1α expression in order to 78 

suppress the decline of muscle oxidative capacity due to hyperglycemia. 79 

Physical exercise is a principal method to improve low muscle oxidative capacity in 80 

diabetes (Lumb 2014). However, it is physically difficult for some diabetic patients due to 81 
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their complications and exercise intolerance. Therefore, it is necessary to develop an 82 

alternative treatment, which is effective even for diabetic patients with exercise intolerance. 83 

Carbon dioxide (CO2) therapy has long been used in Europe as an effective treatment for 84 

cardiac disease and skin lesions (Riggs 1960; Goodman et al. 1975; Wells 1999). Exposure to 85 

CO2 elevates blood flow and microcirculation in many tissues as well as partially increases O2 86 

pressure in the local tissues, a phenomenon known as the Bohr effect (Riggs 1960; Wells 87 

1999; Jensen 2004; Izumi et al. 2015). Also, it is well known that CO2 therapy induces 88 

peripheral vasodilation, thereby increasing tissue blood flow (Hartmann et al. 1997; Sakai et 89 

al. 2011). The transfer of CO2 across the skin might have beneficial local vasomotor effects 90 

without causing systemic hemodynamic modifications (Savin et al. 1995). In addition, the 91 

effects of CO2-enriched water on subcutaneous microcirculation are regulated by peripheral 92 

vasodilation, which results from increased parasympathetic and decreased sympathetic nerve 93 

activity (Toriyama et al. 2002). Together, these reports indicate that CO2 therapy has a 94 

positive impact on microcirculation. A blood flow-induced mechanical factor enhances the 95 
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expression level of endothelial nitric oxide synthesis (eNOS) in vascular endothelial cells 96 

(Harrison et al. 1996; Fleming and Busse 2003). eNOS is one of three NOS isozymes, which 97 

plays a major role in many physiological functions, such as regulating vascular tone (Huang 98 

et al. 1995; Duplain et al. 2001) and insulin sensitivity (Vincent et al. 2003). Additionally, 99 

nitric oxide synthesized by eNOS can increase PGC-1α protein expression in skeletal muscle 100 

via activation of cyclic guanosine monophosphate (cGMP) and consequently promote 101 

mitochondrial biogenesis and function (Le Gouill et al. 2007; Ventura-Clapier et al. 2008; 102 

Nisoli et al. 2004, 2003; Lira et al. 2010). On the other hand, it has been reported that 103 

application of CO2 therapy up-regulates eNOS and cGMP expression in skeletal muscle via an 104 

increase in blood flow (Irie et al. 2005; Izumi et al. 2015). Moreover, the expression of 105 

positive regulators of oxidative capacity, including PGC-1α and sirtuin1 (SIRT1) is enhanced 106 

by transcutaneous application of CO2 therapy (Oe et al. 2011). These results raise the 107 

possibility that transcutaneous CO2 might enhance PGC-1α expression via increase in blood 108 

flow-induced eNOS signaling. Therefore, we hypothesized that application of transcutaneous 109 
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CO2 therapy attenuates the impaired muscle oxidative capacity in diabetes via up-regulation 110 

of eNOS and PGC-1α signaling. In the present study, we investigated the effect of CO2 111 

therapy on muscle oxidative enzymatic activity and protein expression of eNOS, PGC-1α, and 112 

cytochrome c oxidase subunit 4 (COX-4) using type 1 diabetes rodent model generated by a 113 

single injection of streptozotocin (STZ), a compound that displays a preferential toxicity 114 

toward pancreatic β-cells. 115 

116 
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Materials and Methods 117 

Animals 118 

Eight-week-old male Wistar rats (Japan SLC, Shizuoka, Japan) were used. These 119 

animals were randomly divided into 4 groups: control (CON/CO2 (–); n = 5), CO2 treatment 120 

(CON/CO2 (+); n = 5), STZ-induced diabetes (STZ/CO2 (–); n = 5), and STZ-induced 121 

diabetes treated with CO2 (STZ/CO2 (+); n = 5). All animals were housed at a temperature of 122 

22 ± 2 °C with 12/12 h light/dark cycle and provided standard rodent chow and water ad 123 

libitum. Diabetes was induced by a single intravenous injection of 50 mg/kg STZ (Wako, 124 

Osaka, Japan) dissolved in citrate buffer. The blood glucose levels were measured 2 days after 125 

injection, and animals with blood glucose levels more than 250mg/dL were used as a model 126 

for diabetes. Rats in both the STZ groups were injected with STZ, and the rats in both CON 127 

groups were injected with the same volume of citrate buffer. This study was approved by the 128 

Institutional Animal Care and Use Committee and carried out according to the Kobe 129 

University Animal Experimentation Regulations. All experiments were conducted in 130 
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accordance with the National Institute of Health Guide for the Care and Use of Laboratory 131 

Animals (National Research Council, 1996). 132 

 133 

Transcutaneous CO2 therapy 134 

All animals were anesthetized with isoflurane (Wako, Osaka, Japan), and the hair on 135 

their hind limbs were shaved. CO2 hydrogel, which enhances transcutaneous CO2 absorption 136 

(NeoChemir Inc Kobe, Japan) as previously described (Oe et al. 2011), was applied on their 137 

hind limbs without anesthesia. The CO2 adaptor was attached to the limbs and sealed. In the 138 

CON/CO2 (+) and STZ/CO2 (+) groups, 100% CO2 gas (Mizushima Sanso, Kobe, Japan) was 139 

administered into the adaptor for 30 min, as previously described (Oe et al. 2011). This 140 

treatment was started from 5 days after injection of STZ and performed 5 times a week for 8 141 

weeks. 142 

 143 

Fasting blood glucose 144 
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After a fasting period of 12 h, the blood samples were obtained from the caudal vein. 145 

The blood glucose levels were measured using a portable blood glucose analyzer (Glutest Neo 146 

Super; Sanwa Kagaku Kenkyusho Co. Ltd., Nagoya, Japan) and monitored every 2 weeks. 147 

 148 

Surgical procedure 149 

After 8 weeks, rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). The 150 

soleus muscle was removed and weighed, and then the muscle tissue was rapidly frozen using 151 

isopentane cooled in dry ice and stored at –80 °C until further biochemical analysis.  152 

 153 

Citrate synthase (CS) activity 154 

The activity of CS, a key mitochondrial enzyme in the tricarboxylic acid cycle, is used 155 

as an indicator of oxidative capacity of the skeletal muscle. The sample was homogenized in 156 

10 mM Tris (pH 7.4), 175 mM KCl, and 2 mM EDTA. The homogenates were frozen, thawed 157 

thrice, and then centrifuged at 15,000 g for 10 min at 4 °C. The supernatants were collected 158 
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and used for measuring the CS activity by Srere’s method (Srere 1969). Briefly, supernatants 159 

were reacted with 5 mM oxaloacetate acid after addition of 100 mM Tris (pH 7.4), 3 mM 160 

acetyl-CoA, and 1 mM 5,5ʹ -dithiobis [2-nitrobenzoric acid], and the absorbance was 161 

measured at 412 nm for 5 min. 162 

 163 

Western blotting 164 

Portions (approximately 10 mg) of each soleus muscle were homogenized in RIPA lysis 165 

buffer containing 1 mM Na3 VO4, 1 mM NaF, and protease inhibitor cocktail (1:100, P8340; 166 

Sigma Chemicals, Perth, WA, USA). Total supernatant protein concentrations were 167 

determined according to Bradford method using a protein assay kit (Bradford 1976) (Bio-Rad 168 

Laboratories, Hercules, CA, USA) before loading onto either 7.5 or 15% sodium dodecyl 169 

sulfate-polyacrylamide gels. Proteins were blotted onto polyvinylidene difluoride membranes, 170 

which were then blocked for 1 h with 5% skimmed milk in phosphate-buffered saline with 171 

0.1% Tween 20 (PBST). Membranes were incubated with antibodies against PGC-1α (1:200 172 
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in PBST, sc-13067; Santa Cruz Biotechnology, Santa Cruz, CA, USA), COX-4 (1:1000 in 173 

PBST, #4850; Cell Signaling Technology), or eNOS (1:1000 in PBST, #5880; Cell Signaling 174 

Technology) overnight at 4 °C and then incubated in a solution with horseradish 175 

peroxidase-conjugated anti-mouse or rabbit secondary antibody (1:1000 in PBST; GE, 176 

Healthcare, Waukesha, WI, USA) for 1 h. Proteins were detected using EzWestLumi Plus kit 177 

(ATTO, Tokyo, Japan). Finally, images were analyzed with an LAS-1000 (Fujifilm, Tokyo, 178 

Japan) using a chemiluminescent image analyzer and quantified using the Multi-Gauge Image 179 

Analysis Software program (Fujifilm) against a relative concentration of GAPDH (1:1000 in 180 

PBST, #97166; Cell Signaling Technology) as an internal control.  181 

 182 

Statistical analysis 183 

All data are presented as mean ± standard error of mean (SEM). The differences were 184 

assessed by two-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. All 185 

data of time-dependent changes of blood glucose levels were assessed by two-way repeated 186 
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measured ANOVA followed by Tukey’s post hoc test. Results were deemed statistically 187 

significant at p < 0.05.  188 

 189 

190 



Effects of CO2 therapy on muscle oxidative capacity 

 17 

Results 191 

Body mass and soleus muscle mass 192 

There was no significant difference in body mass and muscle mass between the 193 

STZ/CO2 (–) and STZ/CO2 (+), and the CON/CO2 (–) and CON/CO2 (+) groups, respectively. 194 

The mean body mass and soleus muscle mass were significantly decreased due to induction of 195 

hyperglycemia (8 weeks) (Table 1). 196 

 197 

Fasting blood glucose 198 

Figure 1 shows the time-dependent change of fasting blood glucose levels for 8 weeks. 199 

There was no significant difference in blood glucose levels between the CON/CO2 (–) and 200 

CON/CO2 (+) groups. The blood glucose levels were significantly higher in both STZ groups 201 

compared to those in both CON groups, and lower in STZ/CO2 (+) group compared to those 202 

in STZ/CO2 (–) group at a point in 4, 6, and 8 weeks after the start of the experiment. 203 

CS activity 204 
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There was no significant difference in CS activity between both the CON groups 205 

(Figure 2). CS activity was significantly lower in STZ/CO2 (–) group than that in CON/CO2 206 

(–) group, and higher in STZ/CO2 (+) group than that in STZ/CO2 (–) group. 207 

 208 

Protein expression levels of PGC-1α, COX-4, and eNOS  209 

Representative images of western blots for PGC-1α, COX-4, and eNOS expression in 210 

the soleus muscle are shown in Figure 3. There were no significant differences in the protein 211 

content of PGC-1α, COX-4, eNOS between both the CON groups. The protein level of eNOS 212 

was significantly higher in the STZ/CO2 (+) group than that in the STZ/CO2 (–) group. The 213 

protein levels of PGC-1α and COX-4 were significantly lower in the STZ/CO2 (–) group than 214 

those in the CON/CO2 (–) group, but significantly higher in the STZ/CO2 (+) group than those 215 

in the STZ/CO2 (–) group. 216 

 217 

218 
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Discussion 219 

The novel finding of the present study was that application of transcutaneous CO2 220 

therapy attenuated the decrease in CS activity in the skeletal muscle of rats with STZ-induced 221 

hyperglycemia. Furthermore, the protein expression levels of eNOS, PGC-1, and COX-4 were 222 

higher in the STZ/CO2 (+) group compared with those in the STZ/CO2 (–) group. These 223 

observations indicated that application of transcutaneous CO2 to rats with STZ-induced 224 

diabetes improved the impaired muscle oxidative capacity via enhancement of eNOS and 225 

PGC-1α-related signaling in hyperglycemic skeletal muscle.  226 

Many studies have reported that PGC-1α is an important regulator of oxidative capacity 227 

in skeletal muscle (Zechner et al. 2010; Tadaishi et al. 2011; Kang et al. 2012). In the present 228 

study, the activity of CS, an indicator of oxidative capacity, and expression of COX-4, an 229 

enzyme of the mitochondrial respiratory chain, in the skeletal muscle were decreased in rats 230 

with STZ-induced hyperglycemia (Figure 2), which is consistent with previous reports (Py et 231 

al. 2002; Roberts-Wilson et al. 2010; Padrão et al. 2012, Wang et al. 2018). Additionally, the 232 
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expression level of PGC-1α in the STZ/CO2 (–) group was significantly decreased compared 233 

with that in the CON/CO2 (–) group (Figure 3). Thus, the hyperglycemia-related decline in 234 

skeletal muscle oxidative capacity could be due to the down-regulation of PGC-1α. 235 

It has been reported that shear stress associated with an increase in blood flow increases 236 

the expression level of eNOS (Yang et al. 2013), which can also be achieved by 237 

administration of α1-adrenergic receptor antagonist prazosin, an inducer of vasodilation 238 

(Baum et al. 2004), and exercise (Lloyd et al. 2001; Vassilakopoulos et al. 2003; Egginton 239 

2009; Lee-Young et al. 2010). These reports suggest that blood flow appears to be a strong 240 

modulator of eNOS levels. On the other hand, Izumi et al. (2015) showed that CO2 therapy 241 

promotes blood flow in the subcutaneous tissues, and up-regulates the expression of eNOS in 242 

the hind limb of ischemic rats. Kindig et al. (1998) showed that STZ-induced hyperglycemia 243 

in rat results in a decrease in the proportion of capillaries in the skeletal muscle, due to which 244 

the blood flow within the skeletal muscle may be impaired. In the present study, an increase in 245 

the expression level of eNOS was observed in the STZ/CO2 (+) group, but not in the 246 
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CON/CO2 (+) group. Our results, combined with previous findings, suggest the possibility 247 

that CO2 therapy might influence eNOS expression only under conditions of reduced blood 248 

flow. Therefore, the increased eNOS expression in the STZ/CO2 (+) group might be 249 

associated with enhanced blood flow within the skeletal muscle, consistent with a previous 250 

report showing the positive effect of CO2 therapy in a hind limb ischemia model. 251 

eNOS is a key factor for the enhancement of muscle oxidative capacity via 252 

up-regulation of PGC-1α expression. In a previous study, application of CO2 to a hind limb 253 

ischemia model enhanced eNOS expression in the skeletal muscle (Irie et al. 2005; Izumi et al. 254 

2015). Additionally, application of transcutaneous CO2 to sedentary rats for 12 weeks 255 

increased the mRNA level of PGC-1α and SIRT1 and mitochondria number (Oe et al. 2011). 256 

Our results showed an increase in the protein expression of PGC1α as well as eNOS by 257 

application of transcutaneous CO2 therapy to rats with STZ-induced hyperglycemia. On the 258 

other hand, application of transcutaneous CO2 had no influence on the protein expression 259 

levels of PGC-1α and eNOS in the CON/CO2 (+) group. This result suggested that the 260 
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increase in expression of PGC-1α in the STZ/CO2 (+) group was mediated by increased blood 261 

flow and resultant up-regulation of eNOS. Therefore, the effects of transcutaneous CO2 on 262 

muscle oxidative capacity in hyperglycemic rats could be involved in the up-regulation of 263 

PGC-1α thorough an increase in eNOS expression. 264 

In the present study, application of transcutaneous CO2 decreased the fasting blood 265 

glucose levels in rats with STZ-induced hyperglycemia. It has been reported that an increase 266 

in PGC-1α expression improves impaired glucose metabolism (Puigserver 2005). Here, the 267 

expression level of PGC-1α was increased in the STZ/CO2 (+) group compared to that in the 268 

STZ/CO2 (–) group. Hence, our results suggest that application of transcutaneous CO2 can 269 

improve hyperglycemia via increase of glucose metabolism mediated by increased PGC-1α 270 

expression. 271 

In conclusion, this study demonstrates a novel effect of transcutaneous CO2 on the 272 

impaired muscle oxidative capacity of rats with STZ-induced hyperglycemia. Application of 273 

transcutaneous CO2 improved hyperglycemia-related decline in muscle oxidative capacity, as 274 



Effects of CO2 therapy on muscle oxidative capacity 

 23 

shown by an increase in CS activity and increased expression levels of COX4 and PGC-1α, 275 

which contributed to the amelioration of hyperglycemia. These results indicate that 276 

transcutaneous CO2 therapy can be used to improve hyperglycemia-induced muscle metabolic 277 

dysfunction. 278 

279 
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Figure legends 464 

Figure 1. Time-dependent effects of STZ and transcutaneous CO2 on fasting blood glucose 465 

levels (two-way repeated measured ANOVA, main effects: time, p < 0.05; group, p < 0.05; 466 

interaction, p < 0.05). Values are presented as mean ± SEM. *, †, and ‡ significantly different 467 

from CON, CO2, and STZ, respectively, at p < 0.05. 468 

 469 

Figure 2. CS activity in the soleus muscle (two-way ANOVA, main effects: STZ, p < 0.05; 470 

CO2, n.s.; interaction, p < 0.05). Values are presented as mean ± SEM. * and † significantly 471 

different from CON with same intervention and CO2 (–) vs CO2 (+), respectively, at p < 0.05.  472 

 473 

Figure 3. Mean protein expression levels of (A) eNOS (two-way ANOVA, main effects: STZ, 474 

p < 0.05; CO2, n.s.; interaction, n.s.), (B) PGC-1α (two-way ANOVA, main effects: STZ, p < 475 

0.05; CO2, n.s.; interaction, n.s.), and (C) COX-4 (two-way ANOVA, main effects: STZ, n.s.; 476 

CO2, n.s.; interaction, n.s.) in the soleus muscles of each group. The data are expressed as a 477 
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fold change (a.u.) from the value of the CON group that is set to a value of 1. The levels of 478 

protein expression were normalized to GAPDH level. Values are presented as mean ± SEM. * 479 

and † significantly different from CON with same intervention and CO2 (–) vs CO2 (+), 480 

respectively, at p < 0.05.  481 

 482 
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