New Ca²⁺-buffers for enhanced performance

Joseph M. Metzger

Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA, 48109. E-mail: <u>metzgerj@umn.edu</u>

Diastolic heart failure (DHF) is a clinical syndrome characterized by depressed myocardial relaxation performance and poor ventricular refilling. Defective intracellular calcium (Ca²⁺) handling underlies one of the fundamental mechanisms of DHF. Manipulating the content and function of Ca²⁺ handling proteins in the heart has been the focus of intense study to develop effective therapies for DHF patients. Parvalbumin (Parv), a skeletal muscle Ca²⁺ binding protein, has been shown to facilitate myocardial relaxation both in vitro and in vivo. Parv acts as a unique "delayed" Ca²⁺ buffer and facilitates Ca²⁺ sequestration from cytosol. Here, we summarize studies employing gene transfer of Parv in cultured adult cardiac myocytes and in vivo to redress depressed diastolic function. By targeting defects in cardiac Ca²⁺ handling, Parv represents a promising therapeutic candidate for alleviating diastolic dysfunction in DHF.