Cross-talk of intracellular calcium stores in the response to neuronal ischemia and ischemic tolerance

Ján Lehotský, Peter Račay, Martina Pavlíková, Zuzana Tatarková, Peter Urban, Mária Chomová, Peter Kaplán, Mária Kovalská

Department of Medical Biochemistry, Comenius University, Jessenius Faculty of Medicine, Martin, Slovakia. E-mail: lehotsky@jfmed.uniba.sk

Ischemic/reperfusion brain injury (IRI) is very severe event with the multiple etiopathogenesis. Ischemic preconditioning (IPC) is the phenomenon of adaptation of CNS to ischemic insult. An altered cross-talk between intracellular Ca$^{2+}$ stores is presumed in the mechanisms of IRI. We show here that IRI leads to the inhibition of mitochondrial respiratory complexes I and IV, however Ca$^{2+}$ uptake rate is not significantly depressed. IPC acts at the level of initiation and execution of mitochondrial apoptosis and activates inhibition of p53 translocation to mitochondria. [1] In addition, IRI initiates a time dependent differences in endoplasmic reticular (ER) gene expression of the key UPR proteins which is affected by preischemic treatment by the expression of Ca$^{2+}$ binding GRP78 and ATF6 proteins. The expression pattern of the secretory pathways Ca$^{2+}$ pump (SPCA1) after IRI is remarkably affected by IPC and IPC leads to partial recovery of depressed SPCA activity. [3] Functional alterations of mitochondria, ER and SP contribute to the understanding of cross-talk between neuronal Ca$^{2+}$ stores in ischemia and ischemic tolerance and might suggest for targets of therapeutic interventions to enhance recovery after stroke.

This work was supported by the VEGA grant No. 49/09, VVCE 64/07.