doi: 10.4149/gpb_2021031

Review

The structure of the unstructured: mosaic of tau protein linear motifs obtained by high-resolution techniques and molecular simulation

Ondrej Cehlar¹, Olga Bagarova^{1,2,3}, Lenka Hornakova^{1,2,4} and Rostislav Skrabana¹

Abstract. Intrinsically disordered proteins are flexible molecules with important physiological functions. Their mode of action often involves short segments, called linear motifs, which may exhibit distinct structural propensities. Tau is intrinsically disordered, microtubule-associated protein involved in the pathogenesis of various tauopathies. In this review we analyze the collection of 3D structures of tau local linear motifs gained from the deposited structures of tau complexes with various binding partners as well as of tau-tau complexes; determined by X-ray and electron crystallography, single-particle electron microscopy, NMR spectroscopy and molecular dynamics simulations. Insights into the partially stabilized conformations of tau linear motifs are valuable for understanding the physiological and pathological processes involving tau protein.

Key words: Tau protein — Conformation — Linear motif — Antibody — X-ray crystallography

Abbreviations: FRET, fluorescence resonance energy transfer; MTBD, microtubule binding domain; MTBR, microtubule binding repeat; PHF, paired helical filament; PRE, paramagnetic relaxation enhancement.

Introduction

Intrinsically disordered proteins and protein regions (IDPs/IDRs) form a distinct, recently identified structural and functional entity of the proteome of all kingdoms of life (Dyson and Wright 2005). IDPs don't attain a constant 3D structure under physiological conditions, having a relatively flat energy landscape with many shallow minima that can be described as a conformational ensemble of fluctuating structures (Fisher and Stultz 2011). IDPs are highly abundant in nature and their functional repertoire supplements the

Correspondence to: Ondrej Cehlar, Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravská cesta 9, 845 10 Bratislava, Slovakia

E-mail: ondrej.cehlar@savba.sk

functions of globular proteins. However, many IDPs play a role in the pathogenesis of human diseases e.g. neurodegenerative diseases, cancer and diabetes (Uversky et al. 2008).

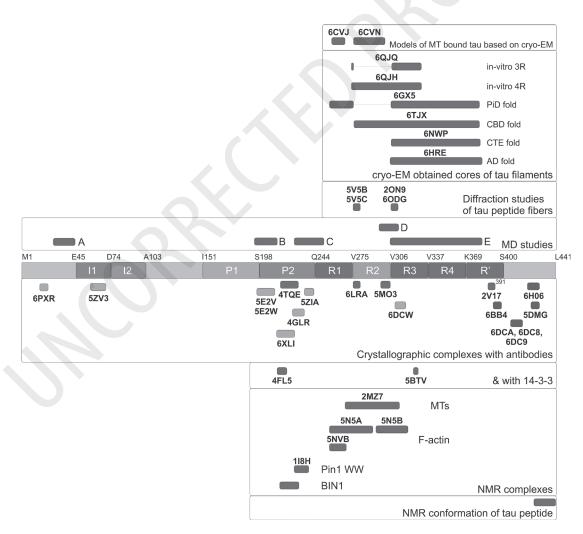
In contrast to folded globular proteins, which often interact by means of a large contact area supported by protein tertiary structure, IDPs use for their interactions independently behaving short segments called linear motifs. Despite their short length and lack of stable structure, linear motifs may have detectable structural propensities, which often resemble bound-state conformations. Molecular dynamics (MD) simulations are able to detect conformational ensembles of linear motifs in uncomplexed state, giving a clue to their interaction potential (Cino et al. 2013a). For example, among 10 disordered binding partners of the Kelch domain of the hub protein Keap1, the highest affinity was measured for those that resembled the bound-state like conformation

© The Authors 2021. This is an **open access** article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹ Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia

² Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia

³ Institute of Experimental Physics, Department of Biophysics, Slovak Academy of Sciences, Kosice, Slovakia


⁴ Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, Bratislava, Slovakia

to the highest extent during MD simulation (Cino et al. 2013b). Therefore, intramolecular contacts in an intrinsically disordered region may serve as important intermolecular binding determinants (Davey 2019).

Neuronal protein tau is a representative member of the group of IDPs. The conversion of tau from physiological disordered form to rigid amyloid fibres is the hallmark of severe diseases – neurodegenerative tauopathies including Alzheimer's disease (AD). The driving forces and atomic details of this metamorphosis are largely unknown and insights into the conformational preferences of tau partial segments may bring important clues.

The main physiological role of tau protein is to stabilize microtubules and regulate their dynamics but tau is also involved in actin binding, neuroplasticity, axonal transport and axonal sprouting, cell cycle regulation, synaptic transmission and interactions with plasma membrane (Castellani and Perry 2019).

The alternative splicing of MAPT gene produces six tau protein isoforms present in CNS, which differ in the presence or absence of N-terminal inserts (none, one or two) and by the presence of three (3R isoforms) or four (4R isoforms) microtubule binding repeat regions (MTBR) (Goedert et al. 1989). Longer tau isoforms with large N-terminal insertions are expressed in peripheral nervous system (Fischer and Baas 2020). Whereas the length of CNS tau isoforms ranges from 352 to 441 amino acids, the longest peripheral tau isoform is 758 amino acids long (UniProt entry P10636). Based on sequence characteristics and function, tau molecule can be divided into the

Figure 1. Positional scheme of local tau structures obtained by different methods mentioned in this review relative to the domain structure of the longest human tau isoform 2N4R (tau40) with N-terminal inserts I1, I2, proline rich regions P1, P2, MTBRs R1-R4 and region following repeats R. Position of tau peptide is shown with corresponding PDB ID, if available. Depicted tau peptides that were subjects of MD studies: A. N-terminal tau fragment 26–44 (Perini et al. 2019), B. AT8 epitope phospho-peptide (Gandhi et al. 2015), C. Tau phospho-peptide 225–250 (Lyons et al. 2014), D. R2-R3 interface (Chen et al. 2019), E. AD PHF core dimer (Derreumaux et al. 2020).

N-terminal projection domain (amino acids 1-150, numbering of the longest CNS isoform), proline rich region (151–243), microtubule binding domain (MTBD, 244–399) and C-terminal tail (400-441). Tau protein can undergo many posttranslational modifications: phosphorylation, truncation, glycosylation, glycation, nitration, ubiquitination, SUMOylation, prolyl isomerization, acetylation that have structural and functional implications.

Disruption of finely tuned network of specific albeit weak interactions mediated by (pre)structured linear motifs in the tau molecule may be the turning point of neurodegeneration. Small molecules predicted to bind computationally identified structural motifs in the tau aggregation domain were able to delay tau aggregation in vitro (Baggett and Nath 2018). Transiently populated linear motifs identified by MD or high-resolution experimental techniques may therefore represent potential druggable targets for tauopathy treatment.

The preferred conformations of linear motifs in the otherwise disordered tau molecule may constitute immunodominant hotspots, recognised by binders of naïve B-cell

Table 1. Tau structures of nonredundant segments obtained by X-ray or electron crystallography

X-	ray crystallography			,
Binding p	partner: Antibody Fab fragment			
PDBID	Antibody name	Tau peptide modelled	Tau peptide used for crystallization	Resolution (Å)
6PXR	IPN002 (Sopko et al. 2020)	¹⁵ AGTYGLGD ²² (Fig. 2A)	9-26	1.56
5ZV3	CBTAU28.1 (Apetri et al. 2018)	⁵⁷ EEPGSETSDAKS ⁶⁸ (Fig. 2B)	52-71	2.09
5E2V	AT8 (Malia et al. 2016)	²⁰¹ G pS PG pT PGSR ²⁰⁹	194-211 (pS202, T205)	1.64
5E2W	AT8 (Malia et al. 2016)	²⁰² pS PG pT PG pS R ²⁰⁹ (Fig. 2C,U)	194–211 (pS202, pT205, pS208)	1.50
6XLI	PT3 (Van Kolen et al. 2020)	²¹⁰ SR p TPSLP p TPPTRE ²²² (Fig. 2D)	210-222	2.00
4tqe	TAU5 (Cehlar et al. 2015)	²¹⁵ LPTPPTREPKKVAVVR ²³⁰ (Fig. 2E)	201-230	1.65
4GLR	Ultra-specific Avian Antibody (Shih et al. 2012)	²²⁵ KVAVVR pT PPK ²³⁴ (Fig. 2F)	224–240	1.90
5ZIA	CBTAU-24.1 (Zhang et al. 2018)	²³⁵ SPS pS AKSRL ²⁴³ (Fig. 2G)	221-245 (pT231, pS238)	2.60
6LRA	Tau2r3 (Tsuchida et al. 2020)	²⁷⁵ VQIINK ²⁸⁰ (Fig. 2H)	275–280	1.90
5MO3	DC8E8 (Skrabana et al. 2017)	²⁹⁸ khvpgggs ³⁰⁵ (Fig. 2I,W)	298-311	1.69
6DCW	CBTAU-27.1 (Apetri et al. 2018)	³¹⁰ YKPVDLSKV ³¹⁸ (Fig. 2J)	299-318	2.00
2V17	MN423 (Sevcik et al. 2007)	³⁸⁶ TDHGAE ³⁹¹ (Fig. 2K)	dGAE (297-391)	1.65
6BB4	C5.2 (Chukwu et al. 2018)	³⁹² IVYK pS PV ³⁹⁸ (Fig. 2L)	386-408 (pS396, pS404)	2.10
6DCA	6b2 (Chukwu et al. 2019)	⁴⁰³ TSPRHL ⁴⁰⁸ (Fig. 2M)	379–408	2.59
6DC8	8b2 (Chukwu et al. 2019)	⁴⁰⁴ SPRHL ⁴⁰⁸ (Fig. 2N)	379-408	1.79
6DC9	h4E6 (Chukwu et al. 2019)	⁴⁰³ T pS PRHL ⁴⁰⁸ (Fig. 2O)	386-408 (pS404)	2.99
5DMG	RB86 (Bujotzek et al. 2016)	⁴¹⁹ MVD pS PQLATLAD ⁴³⁰ (Fig. 2P)	416-430	2.50
6H06	CBTAU22.1 (van Ameijde et al. 2018)	⁴¹⁸ DMVD pS PQLAT ⁴²⁷ (Fig. 2T)	404-429	2.63
Binding p	partner: 14-3-3			
4FL5	14-3-3σ (Joo et al. 2015)	²¹¹ RTP pS LPTP ²¹⁸ (Fig. 2Q)	210-218(pS214)	1.90
5BTV	14-3-3σ (Joo et al. 2015)	³²³ G pS LG ³²⁶ (Fig. 2R)	320-328(pS324)	1.70
Binding p	partner: Tau peptide – fibril			
	Tau peptide sequence	Type of interface observed*		
2ON9	VQIVYK (Sawaya et al. 2007)	Class 1, face-to-face		1.51
6ODG	SVQIVY (Seidler et al. 2019)	Class 1, face-to-face		1.00
		Class 3, face-to-face		1.00
	ectron crystallography			
5V5B	KVQIINKKLD (Seidler et al. 2018)	Class 1, face-to-face		
		Interface A: formed by VQIIN		1.50
FMEC	VOIDIV (C.: Il., 1 2010)	Interface B: formed by KKLD		1.25
5V5C	VQIINK (Seidler et al. 2018)	Class 4, face-to-back (Fig. 3F)		1.25

^{*} Classification of steric zippers can be found in Sawaya et al. (2007) or Eisenberg and Sawaya (2017).

repertoire. Indeed, immunization of mice with the 0N4R tau protein isoform has revealed five large regions predominantly populated by tau immunogenic sequences – two in N-terminal projection domain (9–15, 21–27), two in proline rich region (168–174 and 220–228) and one in C-terminal tail (427–438) (Selenica et al. 2014).

Similarly, memory B cells from healthy donors selected against phosphorylated tau peptides identified naturally occurring, somatically mutated tau binding antibodies in these regions (Pascual et al. 2017).

The structure of tau in the complexes with naturally evolved binders may conserve preferred conformations of tau linear interaction motifs. Following this line of thinking, we have gathered all tau conformations in the PDB originated from soluble tau complexes (Fig. 1). 3D structures of tau are obtained mainly by X-ray crystallography, but several structures come also from electron crystallography, NMR and single-particle cryo-EM. Some experimental data are being corroborated with MD simulations. The principal tau binding partners are antibody Fab fragments; other tau binders are 14-3-3s protein, Pin1 WW domain, F-actin, BIN-1, and microtubules. As a complement and for a comparison, we have included also tau-tau complex structures, including cryo-EM structures of tau filaments isolated from brain of individuals who died of a tauopathy. Until April 2021, 76 structures containing tau sequence were deposited in

PDB. 42 were obtained by X-ray crystallography, 25 with electron microscopy, 5 with solution NMR and 4 with electron crystallography (overview of selected structural depositions is presented in Tables 1 and 2). An ensemble of 995 conformations of tau microtubule binding domain is deposited in the protein ensemble database (Lazar et al. 2021) under ID PED00017 (Ozenne et al. 2012). Relative positions of tau peptides observed in complexes with antibody Fab fragments along the 2N4R tau isoform are shown on Figure 1. In the following the tau global fold as well as partial structures will be discussed.

Global conformations of tau protein

NMR measurements with full length tau molecule have revealed preferences of short tau segments for transient secondary structures – α -helices (tau residue stretches 114–123, 428–437), polyproline II helices (175–184, 216–223, 232–239) and β -sheets (86–92, 161–166, 224–230, 274–284, 305–315, 336–345) and the global folding was probed by PRE (Mukrasch et al. 2009; Melkova et al. 2019). By ensemble FRET measurements the C-terminus was shown to be present with high frequency in the proximity of MTBD and 40 N-terminal tau residues, which was termed as the "paperclip" model of tau conformation (Jeganathan et al. 2006). More recently, by single-molecule FRET measurements an

Table 2. Tau structures obtained by NMR and cryo-EM

Solution NMR				
PDB ID	Binding partner	Tau peptide used		
1I8H	Pin1 WW (Wintjens et al. 2001)	²²⁵ KVSVVR pT PPKSPS ²³⁷ *		
5NVB	F-actin (Fontela et al. 2017)	²⁵⁴ KNVKSKIGSTENLKH ²⁶⁸		
5N5A	F-actin (Fontela et al. 2017)	Tau(254-290)		
5N5B	F-actin (Fontela et al. 2017)	Tau(292-319)		
2MZ7	Microtubules (Kadavath et al. 2015)	Tau(267-312)		

Ciy	Dinding portner	Tau peptide modelled	Resolution (Å)
	Binding partner		Resolution (A)
6CVJ	Microtubules (Kellogg et al. 2018)	²⁵⁶ VKSKIGSTENLK ²⁶⁷ (Fig. 2S)	3.20
6CVN	Microtubules (Kellogg et al. 2018)	K274-V300 (Fig. 2V)	3.90
Tauopathy	and in vitro aggregated filaments		
	Filament source and type	Tau peptide modelled	Resolution (Å)
5O3L	AD PHF (3R+4R) (Fitzpatrick et al. 2017)	V306-F378	3.40
6HRE	AD PHF sporadic (3R+4R) (Falcon et al. 2018b)	²⁷³ GK ²⁷⁴ / ³⁰⁴ GS ³⁰⁵ -E380 ** (Fig. 3A)	3.20
6NWP	CTE type I filament (3R+4R) (Falcon et al. 2019)	K274/S305-R379**	2.30
6GX5	Picks disease (3R) (Falcon et al. 2018a)	K254-F378*** (Fig. 3B)	3.20
6TJX	CBD type II (4R) (Zhang et al. 2020)	K274-E380 (Fig. 3C)	3.00
6QJH	In vitro aggregated 2N4R (snake filaments) (Zhang et al. 2019)	G272-H330 (Fig. 3D)	3.30
6QJQ	In vitro aggregated 2N3R (Zhang et al. 2019)	G272-H330*** (Fig. 3E)	3.70

^{*} Tau phospho-peptide contains S227 instead of A present in tau sequence, ** 3R tau incorporated in the fibril has sequence GKVQIVYK, and 4R tau GSVQIVYK at the N-terminal part of the ordered core, *** 3R tau isoforms lack residues 275-305 (numbering according human longest full length isoform 2N4R.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72 73

74

75

76

77

78

80

81

82

83

84

85

86

87

88

89

90

91

92

93 94

95

96

97

98

99

100

101

102

103

104

105

106

107

S-shaped model has been obtained, with both termini more far apart from each other than from MTBD (Elbaum-Garfinkle and Rhoades 2012). Ion mobility mass spectrometry measurements have shown the presence of highly unfolded as well as folded conformers, but with the latter forming only 2% of the total population (Jebarupa et al. 2018). These minority globular and folded conformers of full-length tau were recently modelled by crosslinking-guided discrete MD simulations (Popov et al. 2019). Fluorescence anisotropy measurements with the use of anti-Brownian electrokinetic trap have also shown two families of tau conformations (Manger et al. 2017).

Projection domain of tau

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

49

50

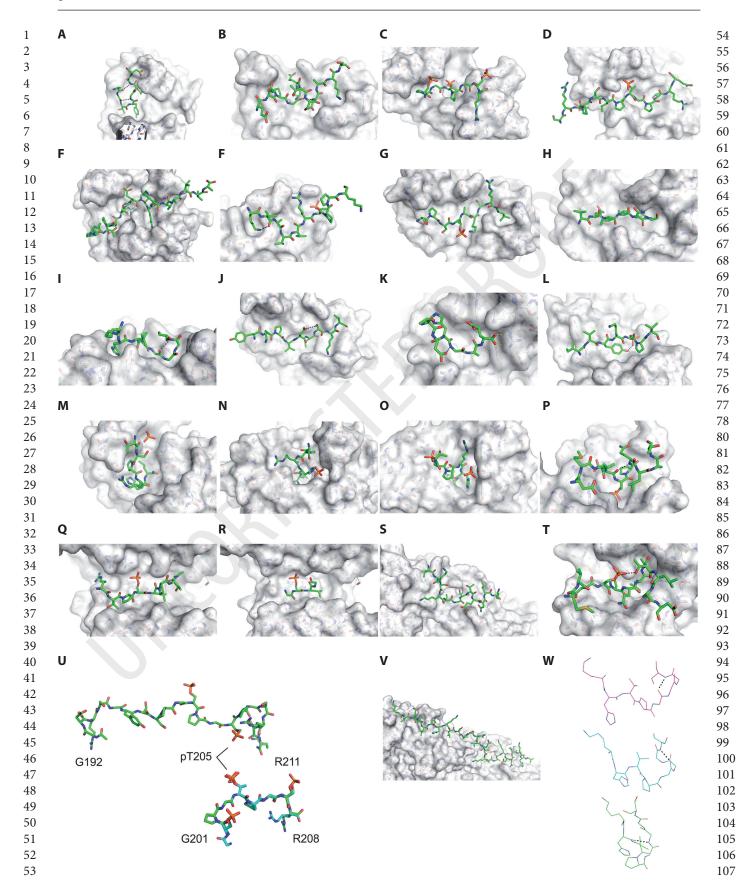
51

52

53

Monoclonal antibody IPN002 recognises an epitope on the extreme N-terminus of tau. IPN002 was humanized to Gosuranemab (BIIB092), an IgG4 antibody, which inhibited tau seeding activity from brain homogenates and transgenic mouse interstitial fluid in cell models. However, it has failed to demonstrate clinical efficacy in progressive supranuclear palsy (PSP) trial and is currently being tested as an AD therapy. The antibody IPN002 was crystallized with tau9-26 peptide and the tau sequence ¹⁵AGTYGLGD²² can be found in the complex structure. The tau peptide forms a type I β-turn between residues 16–19, with one hydrogen bond formed between the carbonyl oxygen of G16 and the amide nitrogen of G19, which is further stabilized by one additional hydrogen bond formed between residues A15 and G21 (Fig. 2A) (Sopko et al. 2020). Residue Y18 can be phosphorylated and in the phosphorylated form interacts with SH2 domain of tyrosine Fyn kinase, which induces tau trafficking to detergent-resistant membrane microdomains (Usardi et al. 2011).

Peptide tau26-44 was proposed as a minimal biologically active moiety of longer 20-22 kDa truncated neurotoxic tau fragment tau26-230 that is accumulating in vivo at AD presynaptic terminals and is present in cerebrospinal fluid (CSF) from AD patients (peptide A in Fig. 1; Borreca et al. 2018). Perini and colleagues have performed five 30 ns long molecular dynamics simulations starting from different initial conformations generated by I-TASSER (Yang et al. 2015). The same procedure has been performed for a control peptide with reverse amino acid sequence. Both peptides obtained mainly coil like structures, turns and bends. Temporary isolated β -bridges, α -helices and 3_{10} -helices were also detected (Perini et al. 2019). SAXS curves were also measured for studied peptides and the ensemble of conformations that give the best fit to the experimental data were extracted from MD runs. The ensemble optimization method EOM with the genetic algorithm GAJOE was used (Bernado et al. 2007). The control peptide was found to exhibit a more compact folding than the tau26-44 peptide.


Structure of tau peptide 57 EEPGSETSDAKST 69 from the first N-terminal insert was solved in the complex with antibody CBTAU28.1 Fab (Apetri et al. 2018). Tau peptide forms an α -helix between residues P59 and K67 (Fig. 2B) which is consistent with observed 5% α -helical conformation of this region in the ensembles selected by the ASTEROIDS analysis of NMR chemical shifts (Schwalbe et al. 2014; Melkova et al. 2019).

Proline rich region

Antibody AT8 (Mercken et al. 1992), relevant for staging of AD progression (Braak et al. 2006), was investigated by X-ray crystallography and also by the combination of NMR and MD in its free solution form. Interestingly, AT8 recognizes multiple phosphorylated sites in the region 199-208. The epitope was originally mapped by ELISA to double phosphorylated peptide pS202/pT205 with cross-reactivity to phospho-pattern pS199/pS202 (Porzig et al. 2007). By surface plasmon resonance (SPR), the highest affinity similar to that of PHF-tau was shown for triple phosphorylated tau peptide with phosphorylated residues pS202/pT205/pS208. Phosphorylation pattern was evaluated on 20 amino acid long tau peptides spanning tau residues 195-214. Peptide with phosphorylated residues pS199/pS202/pT205 showed 10 times lower affinity than pS202/pT205/pS208 and the double phosphorylated peptide (pS202/pT205) showed 27.6 times lower affinity (Malia et al. 2016). AT8 epitope peptide was found in a partially extended conformation with some occurrence of polyproline type II helix secondary structure (Fig. 2C). Combined NMR and MD study proposed an existence of a turn conformation on the C-terminus of AT8 epitope, where the sidechain of pT205 flips between interaction with amide proton of G207 and with sidechain of R209 (Fig. 2U) (Gandhi et al. 2015). The NMR spectrum of tau peptide tau192-212 (peptide B in Fig. 1; pS202/pT205) has reproduced well that of phosphorylated full length tau protein. The full-length tau and tau fragment TauF5 (tau165-224) were in vitro phosphorylated using recombinant CDK2/CycA3 kinase.

Interaction site of tau with 14-3-3 proteins

Tau residue pS214 is involved in the interaction of tau with 14-3-3 proteins together with pS324 from MTBD (Joo et al. 2015). The 14-3-3 protein family comprises seven isoforms; they exist as homo- or heterodimers and interact mainly with phosphorylated protein partners. 14-3-3 σ was shown to be involved in tubulin stability and neuritic outgrowth in neurons. Tau peptides 211 RTPpSLPTP 218 and 323 GpSLG 326 were observed in complexes with 14-3-3 σ protein (Fig. 2Q, 2R). The peptides are bound in an extended conformation in the central binding channel of 14-3-3 σ monomer. The full

length phosphorylated tau protein binds to 14-3- 3σ dimer through both mentioned phosphosites forming a complex with 2:1 stoichiometry (14-3- 3σ :tau) (Neves et al. 2021). The tau peptide with pS214 was the basis for the construction of chimeric inhibitors of 14-3- 3σ /tau interaction that were composed of tau sequence with organic scaffolds fused to residue T217 extending the binding of the inhibitor also to the proximal fusicoccin (14-3- 3σ stabilizer) binding site (Milroy et al. 2015).

Phospho-specific antibody PT3 that binds tau phosphorylated at threonine residues 212 and 217 has been generated and was reported to bind AD PHF and phosphorylated recombinant tau with picomolar affinity (Van Kolen et al. 2020). The whole tau peptide ²¹⁰SRpTPSLPpTPPTRE²²² used for co-crystallization (with acetylated N-terminus) could be modelled in the complex structure. Tau phosphopeptide has an extended conformation with polyproline II helix character and contains intramolecular hydrophobic contacts (Fig. 2D).

pT217 epitope can be used as an AD biomarker in an immunoassay to distinguish AD cases from other dementia cases and healthy controls (Hanes et al. 2020).

Tau sequence 210–230 interacting with BIN1 and tau5 antibody

It was shown that tau interacts with C-terminal SH3 domain of BIN1 (Bridging integrator-1) through its sequence 210–240 (Sottejeau et al. 2015). BIN1 gene was the first of the genetic determinants for sporadic AD with a clear link to Tau pathology (Chapuis et al. 2013). The model of the complex structure of SH3 domain of BIN1 isoform1 and tau peptide was obtained with docking using HADDOCK (van Zundert et al. 2016) that was driven under defined intermolecular unambiguous restraints from a NOESY spectrum and ambiguous restraints chosen as the residues involved in intermolecular NOEs. Tau peptide 213–229 has been modelled (Lasorsa et al. 2018). The 216 PxxP²¹⁹ consensus motif of Tau peptide is bound into the canonical

hydrophobic xP binding pocket of the SH3 domain. The positively charged tau residues R221 and K224 interact with negatively charged residues in the n-Src loop of the specificity zone of BIN1 SH3.

The conformation of tau peptide ²¹⁵LPTPPTREPK-KVAVVR²³⁰ can be obtained from its complex with Tau5 antibody Fab. Its conformation is stabilized by a T-turn motif in the central part of tau epitope, where side chain oxygen of T220 makes a hydrogen bond with main chain amid of E222 (Fig. 2E). This intrachain hydrogen bond stabilizes a V shaped conformation of the peptide (Cehlar et al. 2015).

Sequence stretch ²²⁵KVAVVRT²³¹ may be contributing to the formation of PHF and also to microtubule binding. It loses its flexibility measured by solid state NMR upon *in vitro* filament formation (Savastano et al. 2020). It was shown that regions flanking MTBD, including this segment, are required for high affinity binding of tau to microtubules (Mukrasch et al. 2007).

Tau conformations around phosphorylated residue T231

The tau conformation around residue T231, recognized also by an antibody AT180 used for defining an AD pathological form of phospho-tau, was analysed by several approaches and also by an ultra-specific avian antibody recognizing epitope around pT231. The bond between pT231-P232 is amenable for cis-trans isomerization by peptidyl-prolyl isomerase Pin1, where the cis conformation was shown to appear early in the brains of humans with mild cognitive impairment (Nakamura et al. 2012). NMR measurements performed with tau fragment tau208-324 showed that all prolines were for over 90% in the trans conformation (Ahuja et al. 2016). Lyons and co-workers have performed MD simulations of differently phosphorylated tau peptide 225– 250 (peptide C in Fig. 1) under various conditions (ionic power, phosphate charge) and showed that phosphorylation disrupts the β-sheet patterns present at N- and C- termini of non-phosphorylated peptide. The double phosphorylation has stabilized formation of a transient α -helix between

Figure 2. Structures of tau peptides bound to antibody Fab fragments, 14-3-3σ and microtubules. Structure of tau peptide is shown as sticks with green carbon atoms. Structural poses were drawn from PDB depositions with codes: 6PXR, IPN002 Fab with tau A15-D22 (**A**); 5ZV3, CBTAU-28.1 with tau E57-S68 (**B**); 5E2W, AT8 Fab with tau pS202-R209 (**C**); 6XLI, PT3 Fab with tau S210-E222 (**D**); 4TQE, Tau5 Fab with tau L215-R230 (**E**); 4GLR, avian antibody Fab with tau K225-K234 (**F**); 5ZIA, CBTAU-24.1 with tau S235-L243 (**G**); 6LRA, Tau2r3 Fab with tau V275-K280 (**H**); 5MO3, DC8E8 Fab with tau K298-S305 (**I**); 6DCW, CBTAU-27.1 Fab with tau Y310-V318 (**J**); 2V17, MN423 Fab with tau T386-E391 (**K**); 6BB4, C5.2 Fab with tau I392-V398 (**L**); 6DCA, 6b2 Fab with tau T403-L408 (**M**); 6DC8, 8b2 fab with tau S404-L408 (**N**); 6DC9, h4E6 fab with tau T403-L408 (**O**); 6H06, CBTAU-22.1 Fab with tau D418-T427 (**P**); 4FL5, 14-3-3σ with tau R211-P218 (**Q**); 5BTV, 14-3-3 σ with tau G323-G326 (**R**); 6CVJ, microtubule with tau V256-K267 (**S**); 5DMG, Rb86 fab with tau M419-L428 (**T**); snapshot of the double phosphorylated tau peptide (pS202pT205) from MD simulation (Gandhi et al. 2015; top), aligned conformations of double (pS202pT205) and triple (pS202pT205pS208) phosphorylated tau peptides from complexes with AT8 antibody (Malia et al. 2016; bottom) (**U**); 6CVN, microtubule with tau K274-V300 (**V**); Line model of tau segment ²⁹⁸KHVPGGGS³⁰⁵ from the complex with DC8E8 antibody (5MO3, top) and NMR conformations of tau peptide bound to microtubules (2MZ7; state 1, middle; state 2, bottom) (**W**). Pymol version 1.8.2.1 was used for preparation of structural figures.

residues A239-T245 (Lyons et al. 2014) that was observed previously by NMR on phosphorylated TauF4 (208-324) fragment (Sibille et al. 2012). Molecular ensembles were calculated based on NMR data for non-phosphorylated, doubly phosphorylated (T231/S235) and tetra-phosphorylated (T231/S235/237/238) tau peptide 225-246 (Schwalbe et al. 2015) and found that phosphorylation of T231 resulted in the formation of a salt bridge between the phosphate group of T231 and the neighbouring basic side chain of R230. The structure of tau peptide ²²⁵KVAVVRpTPPK²³⁴ from the complex with avian antibody was solved. Tau phospho-peptide adopts a conformation with two sharp turns at V228 and pT231 (Fig. 2F). This conformation is stabilized by an intramolecular hydrogen bond between the side chain nitrogen of K225 and the carbonyl oxygen of V226 (Shih et al. 2012).

The conformation of a phospho-peptide with pS238 was solved in complex with phosphorylation independent antibody CBTAU24.1 (the phosphate group points away from the paratope). The peptide adopts an extended conformation with a sharp turn from A239 to L243 where only the side chain nitrogen of K240 is able to form intramolecular hydrogen bonds (Fig. 2G) (Zhang et al. 2018).

Microtubule binding domain

Two-dimensional Nuclear Overhauser Effect (NOE) spectra in the absence and presence of MTs were recorded for peptide tau267–312 (Kadavath et al. 2015). The calculations with medium and long range contact data (1.8–6.0 Å) of MT bound conformations yielded converged hairpin conformations for residues 269–284 and 300–310. The hairpin turn is formed by PGGG motifs and is followed by an extended structure of aggregation-prone hexapeptides $^{\rm 275}{\rm VQIINK}^{\rm 280}$ and $^{\rm 306}{\rm VQIVYK}^{\rm 311}$. The calculation for the peptide in solution did not converge to one major conformer.

One of the lowest energy MT-bound conformers stored in PDB shows a similar β -turn stabilized by a main chain hydrogen bond between G302 and S305 as a tau peptide from the complex with DC8E8 antibody (Fig. 2I,W) (Skrabana et al. 2017). Antibody DC8E8 recognizes truncated tau proteins preferentially to the full length tau proteins, inhibits tau aggregation (Kontsekova et al. 2014b), inhibits internalization of extracellular tau by neurons (Weisova et al. 2019), and its epitope in R2 is the basis for the active AD vaccine (Kontsekova et al. 2014a; Novak et al. 2017). DC8E8 binds tau sequence motif HXPGGG present in each of its four MTBRs.

The conformations of tau segment from R2-R3 interface (295–311, peptide D in Fig. 1) were probed by molecular dynamics, Rosetta modelling (Ovchinnikov et al. 2018) and experimental methods that showed formation of meta-

stable compact structures between $^{306}\text{VQIVYK}^{311}$ and its upstream sequence modulating aggregation propensity, where destabilization of a β -hairpin conformation leads to the aggregation-prone conformation with exposed amyloid forming motif (Chen et al. 2019).

Antibody CBTAU27.1 has a common germline origin with the N-terminal antibody CBTAU28.1 (Apetri et al. 2018). It recognizes epitope ³¹⁰YKPVDLSKV³¹⁸ in R3 bordering the PHF6 aggregation prone hexapeptide ³⁰⁶VQIVYK³¹¹. The tau peptide has mainly straight conformation with possible interaction of sidechains of residues D314 and S316 (Fig. 2J).

It was shown by NMR spectroscopy that tau uses several short helical segments for binding to actin (Fontela et al. 2017). α -helical or 3_{10} -helical conformations were identified for tau segments 261–268, 277–283 and 315–318.

Structures of sequences from R1 (²⁵⁶VKSKIGSTEN-LK²⁶⁷, Fig. 2S), and R2 (274–300, whole R2 sequence without PGGG, Fig. 2V) bound to the MT surface in extended conformation were obtained using cryo-EM and Rosetta modelling. Tau synthetic construct with four copies of either R1 or R2 replacing the regular MTBD were used to obtain a better resolution (Kellogg et al. 2018). The ensemble of tau region 202–395 bound to microtubule has been obtained using meta inference cryo-electron microscopy (Brotzakis et al. 2020).

The binding of tau peptide from R' region to α -tubulin surface has been proved with INPHARMA NMR method (interligand nuclear Overhauser effect (NOE) for pharmacophore mapping). Tau peptide corresponding to residues 368–402 has been used (Kadavath et al. 2018).

From peptide steric zippers to tauopathy filaments

It has been shown that short tau peptides containing sequences ²⁷⁵VQIINK²⁸⁰ or ³⁰⁶VQIVYK³¹¹ can form fibrillar aggregates (von Bergen et al. 2000, 2001). These tau peptide segments have been crystalized in form of peptide filaments which enabled their structure solution. Nanocrystals from peptides VQIINK and KVQIINKKLD were prepared and the structures of fibrils were determined by electron crystallography (Seidler et al. 2018). Peptides form homosteric zippers (formed by a single sequence) and they are more tightly bound than previously reported VQIVYK zippers (Sawaya et al. 2007; Fig. 3F), because they have higher shape complementarity and burry larger surface areas. Interestingly, tau K18 construct with ³⁰⁹VY³¹⁰ mutated to IN, thus containing two VQIINK segments, aggregated faster than the wild type construct. Based on the side chain interface between the β -sheets, fibril-capping inhibitors have been generated that were able to inhibit both tau aggregation and the seeding effect of exogenous fibrils (Sievers et al. 2011; Seidler et al. 2018, 2019).

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

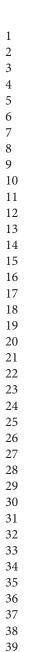
97

98

100

101

102


103

104

105

106

107

40

41

42

43

44

45

46

47

48

49

50

51

52

53

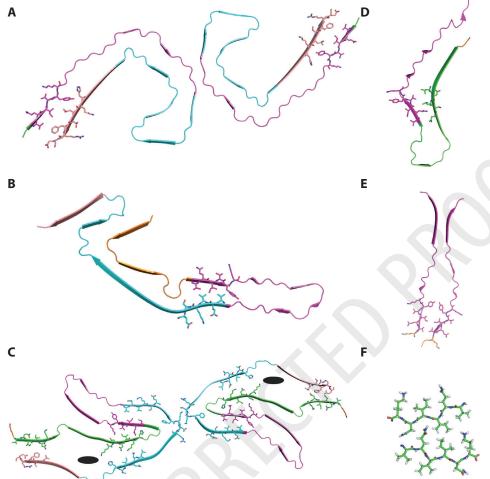
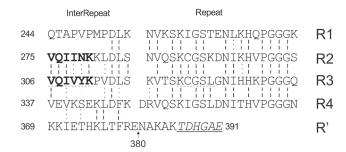



Figure 3. Tau filaments and steric zippers. A. AD PHF fold. Zipper interface residues ³⁰⁶VQIVYK³¹¹ and ³⁷⁴HKLTFRE³⁸⁰ are shown as sticks. Colored according tau MTBRs, R1 orange, R2 green, R3 magenta, R4 cyan, R' salmon. B. Picks narrow fold. Zipper interface residues ³⁰⁶VQIVYK³¹¹ and 337VEVKSE342 are shown as sticks. C. CBD type II (wide) tau fold with sidechains forming four layer interface (337VEVKSE342, 306VOIVYK311 ²⁹⁴KDNIKH²⁹⁹, ³⁵⁷LDNITH³⁶²) shown as sticks. Zipper interface of ²⁷⁵VQIINK²⁸⁰ with ³⁷⁶LT- ${\rm FRE}^{380}$ is also shown as sticks. Interprotofilament interfaceforming segment 346FKDR349 is shown as sticks. PDB 6VH7. Non-proteinaceous density is depicted as black ellipse. D. Fold of in vitro heparin induced 2N4R filament (snake filament). Zipper interface between ³⁰⁶VQIVYK ³¹¹ and ²⁸²LDLSN²⁸⁶ is shown as sticks. E. Fold of in vitro heparin induced 2N3R filament with ³⁰⁶VQIVYK³¹¹ interface. **F.** VQIINK steric zipper interface from protein microcrystal (PDB 5V5C).

Tau peptide VQIINK can be also found in a complex structure with antibody 2r3 Fab (Fig. 2H), generated by immunization with tau peptide 272–283 and inhibiting tau aggregation (Tsuchida et al. 2020).

The above-mentioned interfaces created by short peptides were not observed in cryo EM structures of tau filaments isolated from patients with AD, Picks disease (PiD), corticobasal degeneration (CBD) and chronic traumatic encephalopathy (CTE) (Lippens and Gigant 2019; Scheres et al. 2020). VQIVYK forms a heterosteric zipper interface with corresponding sequence VEVKSE from R4 in PiD and CBD folds (Fig 3). In AD and CTE folds, VQIVYK forms an interface with tau sequence ³⁷⁵KLTF³⁷⁸ from R. Homosteric but parallel interface of VQIVYK was observed only for the *in vitro* heparin-induced 3R filaments, which ordered core is composed of parallel parts of R3 from two tau molecules (Fig. 3E). The folds of *in vitro* aggregated tau filaments differ markedly from patient-derived filament folds. Heparin induced 2N4R and 2N3R tau filaments were characterized

by cryo-EM (Zhang et al. 2019) and 0N4R filaments by solid state NMR (Dregni et al. 2019). 2N4R tau was shown to form four filament types and three of them were solved (snake, twister and jagged filament) to have a core with kinked hairpin fold with stabilized R2 and part of R3 (Fig. 3D, snake filament). In AD and CTE folds, tauopathies with both 3R and 4R tau proteins involved in filaments, repeats R3, R4 and part of R' are stabilized in C-shaped double layered rigid fibril core composed of eight β -sheets with β -helix configuration of chain turn (Fig. 3A) (Fitzpatrick et al. 2017; Falcon et al. 2018b). PiD fold, a 3R tauopathy, consists of nine β-sheets, of which the first and last two create a three-layered motif. The rest of a J-shaped fold contains two layers (Fig. 3B). Residues K254-F378 are stabilized (Falcon et al. 2018a). A 4R tauopathy, CBD, is characterized by compact four-layered fold that extends from K274 to E380. It stabilizes the last residue of R1, repeats R2-R4 and 12 residues form R' (Fig. 3C). In CTE and CBD folds, a channel of non-proteinaceous density has been observed (Falcon et al. 2019; Zhang et

Figure 4. Amino acid sequence of tau MTBD. Conserved and similar amino acids between repeats are shown with dashed and dotted lines respectively. Crystalized epitope of antibody MN423 is underlined and tau stretches contributing to its binding are dashed underlined. Aggregation prone hexapeptides at the beginning of R2 (PHF6*) and R3 (PHF6) are shown in bold. The position of E380, where the recently obtained cryo-EM PHF core structure ends is shown with an arrow.

al. 2020). The mentioned folds are composed of relatively conserved β -sheets arranged differently due to the diversity provided by the loop regions.

Site-specific ubiquitination could be mapped on the models of AD and CBD filaments that can modulate fibril subpopulations (Arakhamia et al. 2020). The binding sites on AD PHFs and SFs for tau PET ligand APN-1607 have been investigated with three possible sites identified, two in β -helix of PHFs and SFs and one in the C-shaped cavity of SFs (Shi et al. 2021).

The tau dimer in an AD fold of R3 and R4 (peptides stacked vertically) has been used as a starting conformation for replica-exchange MD simulations in explicit solvent in order to address its conformational ensemble because the dimer formation may be an important step in filament formation (peptide E in Fig. 1). Tau dimer explored elongated, U-shaped, V-shaped and globular conformations (Derreumaux et al. 2020). The effect of S356 phosphorylation has been also evaluated.

Conformational antibody MN423 has been prepared as an imprint of the core of AD PHF (Novak et al. 1991). In the complex structure with MN423 Fab, tau peptide ³⁸⁶TDH-GAE³⁹¹ can be observed (Sevcik et al. 2007). MN423 binds only tau proteins truncated at E391. In addition to its crystalized tau epitope, tau sequence stretches ³⁰⁶VQIVYK³¹¹ and ³²¹KCGSL³²⁵ were shown to contribute to MN423-tau interaction (Skrabana et al. 2004; Fig. 4). Sidechain of D387 forms a hydrogen bond with main chain nitrogen of G389 that creates an Asp-turn motif (Fig. 2K).

C-terminal domain

Phosphorylated amino acids in the C-terminal domain of tau protein (pS396, pS404, pS413, pS422) are currently be-

ing tested as targets of passive and active immunotherapy (Li and Gotz 2017).

Tau peptide 392 IVYKpSP 397 can be found in complex with antibody C5.2 (Chukwu et al. 2018). The strong interaction between phosphate group and sidechain of Y394 (2.5 Å distance) locks the tau sequence 394 YKpS 396 in a β -strand conformation (Fig. 2L). CDR H3 of the antibody forms a "nest" for phosphoserine recognition.

Antibodies 8B2, 6B2 and 4E6 generated by the immunization with the tau peptide 386–408 containing the pS396/ pS404 motif were structurally characterized (Chukwu et al. 2019). Antibodies 6B2 and 4E6 were previously shown to be of different specificity and affinity. Administration of 4E6 to htau mice showed improved cognition and reduced soluble phospho-tau, whereas 6B2 was ineffective, despite it has shown higher affinities. 4E6 have also reduced tau spreading between neurons measured in microfluidic chamber (Congdon et al. 2016). All three antibodies bind well the peptides containing pSer404 and both pSer396/pSer404, but they differ in binding the pSer396 containing peptide. This peptide is bound well only by the antibody 6B2, whereas the antibody 8B2 binds this peptide only at high concentrations and antibody h4E6, a humanized version of 4E6, does not recognize this peptide at all.

Only the antibody h4E6 was successfully crystallized with peptide containing phosphorylated S404. Tau peptide bound to antibody 8B2 (404SPRHL408) has a straight linear conformation with a small bend between residues R406 and H407 (Fig. 2N). Tau peptide 403TSPRHL408 can be observed in complex with antibody 6B2. The C-terminus of tau peptide forms a half helical turn in contrast to the straight conformation seen in the 8B2 complex (Fig. 2M). The conformation of tau peptide 403 TpSPRHL 408 in complex with antibody h4E6 is similar to that bound to 8B2 but with a bigger backbone bend. Residue pS404 has a different orientation relative to the antibody H and L chains as S404 in other two antibody complexes (Fig. 20). In h4E6 complex it points to the antibody heavy chain, which creates a slight helical twist in peptide conformation in the opposite direction as seen in 6B2 (Chukwu et al. 2019).

Tau peptide ⁴¹⁹MVDpSPQLATL ⁴²⁸ can be found in complex with a rabbit antibody Rb86 Fab (Bujotzek et al. 2016). Interestingly, the backbone conformation around pS422 is similar to that of peptide with pS404 in complex with h4E6 (backbone RMSD of segments ⁴⁰³TpSPR ⁴⁰⁶ and ⁴²¹DpSPQ ⁴²⁴ is 0.28 Å). Sidechain of residue T427 makes a hydrogen bond with the phosphate group of pS422, creating a turn conformation in the C-terminal part of tau epitope (Fig. 2P).

Conformation of similar tau peptide ⁴¹⁸DMVDpSPQ-LA⁴²⁶ was solved in complex with antibody CBTAU22.1 Fab (van Ameijde et al. 2018). In contrast to the binding of

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

1

2

10

15 16

17

18

25

31 32 33

34

35

36 37 38

39

49 50 51

52 53 tau phosphopeptide by Rb86, the phosphate group in the complex with CBTAU22.1 is buried in the cavity formed between the antibody heavy and light chains. Tau peptide forms a helical conformation between residues D421 and L425 stabilized by main chain hydrogen bonds (Fig. 2T).

The α -helical conformation was observed for the tau C-terminal peptide 423–441 in TFE containing solution (α-helix spanning residues 426–439) by NMR spectroscopy (Esposito et al. 2000) which is consistent with the data from the NMR measurement with full length tau molecule that showed helical preference for tau C-terminal stretch ⁴²⁸LADEVSASLA⁴³⁷ (Mukrasch et al. 2009).

Conclusions and perspectives

Some conformational preferences observed for the various regions of full-length tau molecule in solution are preserved in the bound conformations of tau in complexes with antibodies, where also local hydrogen bonding stabilizing specific conformations can be observed. Efforts to elucidate aggregation-prone conformation of truncated tau proteins (Kovacech and Novak 2010) or aggregation resistant/inert tau conformations (Walker et al. 2012; Mirbaha et al. 2018) may be an important direction for the future research designing molecules for identification, inhibition or stabilization of these conformational states. Structural characterization of unstable tau oligomeric states that may represent toxic intermediates on the fibril formation pathway is also needed (Fandrich 2012; Nguyen et al. 2021).

Conflicts of interest. Authors declare no conflict of interest.

Acknowledgments. This work was supported by the Vega grant numbers 2/0145/19 and 02/0163/19. We thank to Dr. Neha S. Gandhi for sharing peptide structure snapshots.

References

Ahuja P, Cantrelle FX, Huvent I, Hanoulle X, Lopez J, Smet C, Wieruszeski JM, Landrieu I, Lippens G (2016): Proline conformation in a functional tau fragment. J. Mol. Biol. **428**, 79-91

https://doi.org/10.1016/j.jmb.2015.11.023

Apetri A, Crespo R, Juraszek J, Pascual G, Janson R, Zhu XY, Zhang H, Keogh E, Holland T, Wadia J, et al. (2018): A common antigenic motif recognized by naturally occurring human V(H)5-51/V(L)4-1 anti-tau antibodies with distinct functionalities. Acta Neuropathol. Commun. 6, 43

https://doi.org/10.1186/s40478-018-0543-z

Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger S.R, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, et al. (2020): Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633-644 e612

https://doi.org/10.1016/j.cell.2020.01.027

Baggett DW, Nath A (2018): The rational discovery of a tau aggregation inhibitor. Biochemistry 57, 6099-6107 https://doi.org/10.1021/acs.biochem.8b00581

Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007): Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656-5664 https://doi.org/10.1021/ja069124n

Borreca A, Latina V, Corsetti V, Middei S, Piccinin S, Della Valle F, Bussani R, Ammassari-Teule M, Nistico R, Calissano P, et al. (2018): AD-Related N-terminal truncated tau is sufficient to recapitulate in vivo the early perturbations of human neuropathology: Implications for immunotherapy. Mol. Neurobiol. **55**, 8124-8153

https://doi.org/10.1007/s12035-018-0974-3

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006): Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections immunocytochemistry. Acta Neuropathol. 112, 389-404

https://doi.org/10.1007/s00401-006-0127-z

Brotzakis YF, Lindstedt PR, Taylor R, Bernardes GJL, Vendruscolo M (2020): A structural ensemble of a tau-microtubule complex reveals regulatory tau phosphorylation and acetylation mechanisms. bioRxiv

https://doi.org/10.1101/2020.11.10.376285

Bujotzek A, Lipsmeier F, Harris S.F, Benz J, Kuglstatter A, Georges G (2016): VH-VL orientation prediction for antibody humanization candidate selection: A case study. MAbs 8, 288-305 https://doi.org/10.1080/19420862.2015.1117720

Castellani RJ, Perry G (2019): Tau biology tauopathy traumatic brain injury and diagnostic challenges. J. Alzheimers Dis. 67, 447-467

https://doi.org/10.3233/JAD-180721

Cehlar O, Skrabana R, Dvorsky R, Novak M (2015): Structural insights into the conformation of the proline rich region of neuronal protein tau. Acta Crystallogr. A 71, S46-S47 https://doi.org/10.1107/S2053273315099271

Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, Geller F, Sottejeau Y, Harold D, Dourlen P, et al. (2013): Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry 18, 1225-1234

https://doi.org/10.1038/mp.2013.1

Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder BD, Perez VA, Woodard D.R, Lin MM, Diamond MI, et al. (2019): Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun. 10, 2493 https://doi.org/10.1038/s41467-019-10355-1

Chukwu JE, Pedersen JT, Pedersen LO, Volbracht C, Sigurdsson EM, Kong XP (2018): Tau antibody structure reveals a molecular switch defining a pathological conformation of the tau protein. Sci. Rep. 8, 6209

https://doi.org/10.1038/s41598-018-24276-4

Chukwu JE, Congdon EE, Sigurdsson EM, Kong XP (2019): Structural characterization of monoclonal antibodies targeting C-terminal Ser(404) region of phosphorylated tau protein. MAbs 11, 477-488

https://doi.org/10.1080/19420862.2019.1574530

Cino EA, Choy WY, Karttunen M (2013a): Conformational biases https://doi.org/10.1038/s41586-019-1026-5 1 54 of linear motifs. J. Phys. Chem. B 117, 15943-15957 Fandrich M (2012): Oligomeric intermediates in amyloid forma-2 55 https://doi.org/10.1021/jp407536p tion: structure determination and mechanisms of toxicity. J. 3 56 Cino EA, Killoran RC, Karttunen M, Choy WY (2013b): Binding Mol. Biol. 421, 427-440 4 57 https://doi.org/10.1016/j.jmb.2012.01.006 of disordered proteins to a protein hub. Sci. Rep. 3, 2305 5 58 Fischer I, Baas PW (2020): Resurrecting the mysteries of big tau. https://doi.org/10.1038/srep02305 6 59 Congdon EE, Lin Y, Rajamohamedsait HB, Shamir DB, Krishnas-Trends Neurosci. 43, 493-504 7 60 wamy S, Rajamohamedsait WJ, Rasool S, Gonzalez V, Levenga https://doi.org/10.1016/j.tins.2020.04.007 8 61 Fisher CK, Stultz CM (2011): Constructing ensembles for in-J, Gu J, et al. (2016): Affinity of Tau antibodies for solubilized 9 62 pathological Tau species but not their immunogen or insolutrinsically disordered proteins. Curr. Opin. Struct. Biol. 21, 10 ble Tau aggregates predicts in vivo and ex vivo efficacy. Mol. 63 11 Neurodegener. 11, 62 https://doi.org/10.1016/j.sbi.2011.04.001 64 12 https://doi.org/10.1186/s13024-016-0126-z Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Gar-65 Davey NE (2019): The functional importance of structure in unringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW 13 66 structured protein regions. Curr. Opin. Struct. Biol. 56, 155-163 (2017): Cryo-EM structures of tau filaments from Alzheimer's 14 67 https://doi.org/10.1016/j.sbi.2019.03.009 disease. Nature 547, 185-190 15 68 Derreumaux P, Man VH, Wang J, Nguyen PH (2020): Tau R3-r4 https://doi.org/10.1038/nature23002 16 69 Fontela YC, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckdomain dimer of the wild type and phosphorylated Ser356 17 70 sequences. I. In solution by atomistic simulations. J. Phys. stetter M (2017): Multivalent cross-linking of actin filaments 18 71 Chem. B 124, 2975-2983 and microtubules through the microtubule-associated protein 19 72 https://doi.org/10.1021/acs.jpcb.0c00574 Tau. Nat. Commun. 8 20 73 Dregni AJ, Mandala VS, Wu H, Elkins MR, Wang HK, Hung I, https://doi.org/10.1038/s41467-017-02230-8 21 DeGrado WF, Hong M (2019): In vitro 0N4R tau fibrils con-Gandhi NS, Landrieu I, Byrne C, Kukic P, Amniai L, Cantrelle FX, 74 22 tain a monomorphic beta-sheet core enclosed by dynamically Wieruszeski JM, Mancera RL, Jacquot Y, Lippens G (2015): 75 heterogeneous fuzzy coat segments. Proc. Natl. Acad. Sci. USA A phosphorylation-induced turn defines the Alzheimer's dis-23 76 116, 16357-16366 ease AT8 antibody epitope on the tau protein. Angew. Chem. 24 77 https://doi.org/10.1073/pnas.1906839116 Int. Edit. 54, 6819-6823 25 78 Dyson HJ, Wright PE (2005): Intrinsically unstructured proteins https://doi.org/10.1002/anie.201501898 26 80 and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208 Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA 27 81 https://doi.org/10.1038/nrm1589 (1989): Multiple isoforms of human microtubule-associated 28 82 Eisenberg DS, Sawaya MR (2017): Structural studies of amyloid protein-tau-sequences and localization in neurofibrillary tan-29 83 proteins at the molecular level. Annu. Rev. Biochem. 86, gles of Alzheimers-disease. Neuron 3 519-526 30 https://doi.org/10.1016/0896-6273(89)90210-9 84 31 https://doi.org/10.1146/annurev-biochem-061516-045104 Hanes J, Kovac A, Kvartsberg H, Kontsekova E, Fialova L, Katina 85 Elbaum-Garfinkle S, Rhoades E (2012): Identification of an S, Kovacech B, Stevens E, Hort J, Vyhnalek M, et al. (2020): 32 86 aggregation-prone structure of tau. J. Am. Chem. Soc. 134, Evaluation of a novel immunoassay to detect p-tau Thr217 in 33 87 16607-16613 the CSF to distinguish Alzheimer disease from other dementias. 34 88 https://doi.org/10.1021/ja305206m Neurology **95**, e3026-e3035 35 89 https://doi.org/10.1212/WNL.000000000010814 Esposito G, Viglino P, Novak M, Cattaneo A (2000): The solution 36 90 Jebarupa B, Muralidharan M, Arun A, Mandal AK, Mitra G (2018): structure of the C-terminal segment of tau protein. J. Pept. 37 91 Sci. 6, 550-559 Conformational heterogeneity of tau: Implication on intrinsic 38 92 https://doi.org/10.1002/1099-1387(200011)6:11<550::AIDdisorder acid stability and fibrillation in Alzheimer's disease. 39 93 -PSC272>3.0.CO;2-S Biophys. Chem. 241, 27-37 94 40 https://doi.org/10.1016/j.bpc.2018.07.005 Falcon B, Zhang WJ, Murzin AG, Murshudov G, Garringer HJ, 41 Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow 95 (2018a): Structures of filaments from Pick's disease reveal a E (2006): Global hairpin folding of tau in solution. Biochemistry 42 96 novel tau protein fold. Nature 561, 137-140 45, 2283-2293 43 97 https://doi.org/10.1038/s41586-018-0454-y https://doi.org/10.1021/bi0521543 44 98 Falcon B, Zhang WJ, Schweighauser M, Murzin AG, Vidal R, Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang 45 99 Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018b): A, Choi HS, Jeon NL, Chang KA, Kim HS, et al. (2015): In-100 46 Tau filaments from multiple cases of sporadic and inherited volvement of 14-3-3 in tubulin instability and impaired axon 47 101 Alzheimer's disease adopt a common fold. Acta Neuropathol. development is mediated by Tau. FASEB J. 29, 4133-4144 48 102 136, 699-708 https://doi.org/10.1096/fj.14-265009 49 103 https://doi.org/10.1007/s00401-018-1914-z Kadavath H, Cabrales Fontela Y, Jaremko M, Jaremko L, Overkamp 50 K, Biernat J, Mandelkow E, Zweckstetter M (2018): The binding 104 Falcon B, Zivanov J, Zhang WJ, Murzin AG, Garringer HJ, Vidal R, 51 Crowther RA, Newell KL, Ghetti B, Goedert M, et al. (2019): mode of a tau peptide with tubulin. Angew. Chem. Int. Edit. 105 52 Novel tau filament fold in chronic traumatic encephalopathy **57,** 3246-3250 106 53 encloses hydrophobic molecules. Nature 568, 420-423 https://doi.org/10.1002/anie.201712089 107

- Kadavath H, Jaremko M, Jaremko L, Biernat J, Mandelkow E, Zweckstetter M (2015): Folding of the tau protein on microtubules. Angew. Chem. Int. Edit. 54, 10347-10351 https://doi.org/10.1002/anie.201501714
- Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E (2018): Near-atomic model of microtubule-tau interactions. Science 360, 1242-1246 https://doi.org/10.1126/science.aat1780
- Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014a): First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model. Alzheimers Res. Ther. **6**, 44 https://doi.org/10.1186/alzrt278
- Kontsekova E, Zilka N, Kovacech B, Skrabana R, Novak M (2014b): Identification of structural determinants on tau protein essential for its pathological function: novel therapeutic target for tau immunotherapy in Alzheimer's disease. Alzheimers Res. Ther. **6**, 45

https://doi.org/10.1186/alzrt277

- Kovacech B, Novak M (2010): Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease. Curr. Alzheimer Res. 7, 708-716 https://doi.org/10.2174/156720510793611556
- Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert JC, Landrieu I (2018): Structural basis of tau interaction with BIN1 and regulation by tau phosphorylation. Front. Mol. Neurosci. 11

https://doi.org/10.3389/fnmol.2018.00421

Lazar T, Martinez-Perez E, Quaglia F, Hatos A, Chemes LB, Iserte JA, Mendez NA, Garrone NA, Saldano TE, Marchetti J, et al. (2021): PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. **49**, D404-D411

https://doi.org/10.1093/nar/gkaa1021

Li CZ, Gotz J (2017): Tau-based therapies in neurodegeneration: opportunities and challenges. Nat. Rev. Drug. Discov. 16, 863-883

https://doi.org/10.1038/nrd.2017.155

- Lippens G, Gigant B (2019): Elucidating Tau function and dysfunction in the era of cryo-EM. J. Biol. Chem. **294**, 9316-9325 https://doi.org/10.1074/jbc.REV119.008031
- Lyons AJ, Gandhi NS, Mancera RL (2014): Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Proteins **82,** 1907-1923 https://doi.org/10.1002/prot.24544
- Malia TJ, Teplyakov A, Ernst R, Wu SJ, Lacy ER, Liu XS, Vandermeeren M, Mercken M, Luo JQ, Sweet RW, et al. (2016): Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8. Proteins **84**, 427-434 https://doi.org/10.1002/prot.24988
- Manger LH, Foote AK, Wood SL, Holden MR, Heylman KD, Margittai M, Goldsmith RH (2017): Revealing conformational variants of solution-phase intrinsically disordered tau protein at the single-molecule level. Angew. Chem. Int. Edit. **56**, 15584-15588 https://doi.org/10.1002/anie.201708242
- Melkova K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Skrabana R, Zweckstetter M, Ringkjobing Jensen M, Blackledge M,

Zidek L (2019): Structure and functions of microtubule associated proteins tau and MAP2c: Similarities and differences. Biomolecules $\bf 9$, $\bf 105$

https://doi.org/10.3390/biom9030105

- Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, Martin JJ, Gheuens J (1992): Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol. **84**, 265-272 https://doi.org/10.1007/BF00227819
- Milroy LG, Bartel M, Henen MA, Leysen S, Adriaans JM, Brunsveld L, Landrieu I, Ottmann C (2015): Stabilizer-guided inhibition of protein-protein interactions. Angew. Chem. Int. Edit. **54**, 15720-15724

https://doi.org/10.1002/anie.201507976

- Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H, et al. (2018): Inert and seed-competent tau monomers suggest structural origins of aggregation. Elife 7, e36584 https://doi.org/10.7554/eLife.36584
- Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009): Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34

https://doi.org/10.1371/journal.pbio.1000034

- Mukrasch MD, von Bergen M, Biernat J, Fischer D, Griesinger C, Mandelkow E, Zweckstetter M (2007): The "jaws" of the tau-microtubule interaction. J. Biol. Chem. **282**, 12230-12239 https://doi.org/10.1074/jbc.M607159200
- Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP (2012): Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell **149**, 232-244

https://doi.org/10.1016/j.cell.2012.02.016

- Neves JF, Petrvalska O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obsil T, Landrieu I (2021): Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences each occupying a binding groove of 14-3-3 dimer. FEBS J. 288, 1918-1934 https://doi.org/10.1111/febs.15574
- Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, et al. (2021): Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease Parkinson's disease type ii diabetes and amyotrophic lateral sclerosis. Chem. Rev. 121, 2545-2647

https://doi.org/10.1021/acs.chemrev.0c01122

Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991): Difference between the tau-protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies-423 and antibodies-7.51. Proc. Natl. Acad. Sci. USA 88, 5837-5841

https://doi.org/10.1073/pnas.88.13.5837

Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, Vince-Kazmerova Z, Katina S, Fialova L, Prcina M, et al. (2017): Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a randomised double-blind placebo-controlled phase 1 trial. Lancet Neurol. **16**, 123-134

https://doi.org/10.1016/S1474-4422(16)30331-3 https://doi.org/10.1074/jbc.RA119.009688 1 54 Ovchinnikov S, Park H, Kim DE, DiMaio F, Baker D (2018): Protein Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray 2 55 structure prediction using Rosetta in CASP12. Proteins 86, K, Gonen T, Eisenberg DS (2018): Structure-based inhibitors 3 56 (Suppl. 1) 113-121 of tau aggregation. Nat. Chem. 10, 170-176 4 57 https://doi.org/10.1002/prot.25390 https://doi.org/10.1038/nchem.2889 5 58 Ozenne V, Schneider R, Yao MX, Huang JR, Salmon L, Zweckstetter Selenica MLB, Davtyan H, Housley SB, Blair LJ, Gillies A, Nord-6 59 hues BA, Zhang B, Liu J, Gestwicki JE, Lee DC, et al. (2014): M, Jensen MR, Blackledge M (2012): Mapping the potential 7 60 energy landscape of intrinsically disordered proteins at amino Epitope analysis following active immunization with tau 8 61 acid resolution. J. Am. Chem. Soc. 134, 15138-15148 proteins reveals immunogens implicated in tau pathogenesis. 9 62 https://doi.org/10.1021/ja306905s J. Neuroinflamm. 11, 152 10 Pascual G, Wadia JS, Zhu X, Keogh E, Kukrer B, van Ameijde J, https://doi.org/10.1186/s12974-014-0152-0 63 Inganas H, Siregar B, Perdok G, Diefenbach O, et al. (2017): Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M 11 64 Immunological memory to hyperphosphorylated tau in asymp-(2007): X-ray structure of the PHF core C-terminus: Insight 12 65 tomatic individuals. Acta Neuropathol. 133, 767-783 into the folding of the intrinsically disordered protein tau in 13 66 Alzheimer's disease. FEBS Lett. 581, 5872-5878 https://doi.org/10.1007/s00401-017-1705-y 14 67 Perini G, Ciasca G, Minelli E, Papi M, Palmieri V, Maulucci G, https://doi.org/10.1016/j.febslet.2007.11.067 15 68 Nardini M, Latina V, Corsetti V, Florenzano F, et al. (2019): Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P, Newell 16 69 KL, Vidal R, Garringer HJ, Sahara N, et al. (2021): Cryo-EM Dynamic structural determinants underlie the neurotoxicity 17 70 of the N-terminal tau 26-44 peptide in Alzheimer's disease structures of tau filaments from Alzheimer's disease with PET 18 71 and other human tauopathies. Int. J. Biol. Macromol. 141, ligand APN-1607. Acta Neuropathol. 141, 697-708 19 72 278-289 https://doi.org/10.1007/s00401-021-02294-3 73 20 https://doi.org/10.1016/j.ijbiomac.2019.08.220 Shih HH, Tu C, Cao W, Klein A, Ramsey R, Fennell BJ, Lambert 21 Popov KI, Makepeace KAT, Petrotchenko EV, Dokholyan NV, M, Shuilleabhain DN, Autin B, Kouranova E, et al. (2012): An 74 22 Borchers CH (2019): Insight into the structure of the "unstrucultra-specific avian antibody to phosphorylated tau protein 75 tured" tau protein. Structure 27, 1710-1715 reveals a unique mechanism for phosphoepitope recognition. 23 76 https://doi.org/10.1016/j.str.2019.09.003 J. Biol. Chem. 287, 44425-44434 24 77 Porzig R, Singer D, Hoffmann R (2007): Epitope mapping of mAbs https://doi.org/10.1074/jbc.M112.415935 25 78 Sibille N, Huvent I, Fauquant C, Verdegem D, Amniai L, Leroy AT8 and Tau5 directed against hyperphosphorylated regions 26 80 of the human tau protein. Biochem. Biophys. Res. Commun. A, Wieruszeski JM, Lippens G, Landrieu I (2012): Structural 27 81 **358,** 644-649 characterization by nuclear magnetic resonance of the impact 28 82 https://doi.org/10.1016/j.bbrc.2007.04.187 of phosphorylation in the proline-rich region of the disordered 29 83 Savastano A, Jaipuria G, Andreas L, Mandelkow E, Zweckstetter M Tau protein. Proteins 80, 454-462 30 (2020): Solid-state NMR investigation of the involvement of the https://doi.org/10.1002/prot.23210 84 31 P2 region in tau amyloid fibrils. Sci. Rep. 10, 21210 Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, 85 https://doi.org/10.1038/s41598-020-78161-0 Stevens JT, Munch J, Baker D, Eisenberg D (2011): Structure-32 86 Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, based design of non-natural amino-acid inhibitors of amyloid 33 87 Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane fibril formation. Nature 475, 96-100 34 88 HT, et al. (2007): Atomic structures of amyloid cross-beta spines https://doi.org/10.1038/nature10154 35 89 reveal varied steric zippers. Nature 447, 453-457 Skrabana R, Kontsek P, Mederlyova A, Iqbal K, Novak M (2004): 36 90 https://doi.org/10.1038/nature05695 Folding of Alzheimer's core PHF subunit revealed by mono-37 91 Scheres SH, Zhang W, Falcon B, Goedert M (2020): Cryo-EM clonal antibody 423. FEBS Lett. 568, 178-182 38 92 structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17-25 https://doi.org/10.1016/j.febslet.2004.04.098 39 93 https://doi.org/10.1016/j.sbi.2020.05.011 Skrabana R, Filipcik P, Kovacech B, Zilka N, Weisova P, Fialova L, 40 94 Schwalbe M, Kadavath H, Biernat J, Ozenne V, Blackledge M, Hanes J, Kralovicova J, Kontsekova E, Barath P, et al. (2017): 41 95 Mandelkow E, Zweckstetter M (2015): Structural impact of Flexible recognition of a flexible target: inhibition of tau protein 42 tau phosphorylation at threonine 231. Structure 23, 1448-1458 oligomerization by DC8E8. Eur. Biophys. J. Biophys. Lett. 46, 96 https://doi.org/10.1016/j.str.2015.06.002 43 97 Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda Sopko R, Golonzhka O, Arndt J, Quan C, Czerkowicz J, Cameron 44 98 M, Jensen MR, Biernat J, Becker S, Mandelkow E, et al. (2014): A, Smith B, Murugesan Y, Gibbons G, Kim SJ, et al. (2020): 45 99 Predictive atomic resolution descriptions of intrinsically disor-Characterization of tau binding by gosuranemab. Neurobiol. 100 46 dered htau40 and alpha-synuclein in solution from NMR and Dis. **146**, 105120 47 101 https://doi.org/10.1016/j.nbd.2020.105120 small angle scattering. Structure 22, 238-249 48 102 https://doi.org/10.1016/j.str.2013.10.020 Sottejeau Y, Bretteville A, Cantrelle FX, Malmanche N, Demiaute 49 103 F, Mendes T, Delay C, Alves Dos Alves H, Flaig A, Davies P, Seidler PM, Boyer DR, Murray KA, Yang TXP, Bentzel M, Sawaya 50 104 MR, Rosenberg G, Cascio D, Williams CK, Newell KL, et al. et al. (2015): Tau phosphorylation regulates the interaction 51 between BIN1's SH3 domain and Tau's proline-rich domain. 105 (2019): Structure-based inhibitors halt prion-like seeding by 52 Alzheimer's disease-and tauopathy-derived brain tissue sam-Acta Neuropathol. Commun. 3, 58 106 53 ples. J. Biol. Chem. 294, 16451-16464 https://doi.org/10.1186/s40478-015-0237-8 107

Tsuchida T, Susa K, Kibiki T, Tsuchiya T, Miyamoto K, In Y, Minoura K, Taniguchi T, Ishida T, Tomoo K (2020): Crystal structure of the human tau PHF core domain VQIINK complexed with the Fab domain of monoclonal antibody Tau2r3. FEBS Lett. **594**, 2140-2149

https://doi.org/10.1002/1873-3468.13791

Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen P, Anderton B, Hanger DP, Noble W, Williamson R (2011): Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains but not SH3 domains altering the cellular localization of tau. FEBS J. 278, 2927-2937

https://doi.org/10.1111/j.1742-4658.2011.08218.x

Uversky VN, Oldfield CJ, Dunker AK (2008): Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. **37**, 215-246

https://doi.org/10.1146/annurev.biophys.37.032807.125924

van Ameijde J, Crespo R, Janson R, Juraszek J, Siregar B, Verveen H, Sprengers I, Nahar T, Hoozemans JJ, Steinbacher S, et al. (2018): Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser(422) containing epitope on pathological tau. Acta Neuropathol. Commun. **6,** 59

https://doi.org/10.1186/s40478-018-0562-9

Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): Discovery and functional characterization of hpt3 a humanized anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416

https://doi.org/10.3233/JAD-200544

van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720-725

https://doi.org/10.1016/j.jmb.2015.09.014

von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001): Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. **276**, 48165-48174

https://doi.org/10.1074/jbc.M105196200

von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. USA **97**, 5129-5134

https://doi.org/10.1073/pnas.97.10.5129

Walker S, Ullman O, Stultz CM (2012): Using intramolecular disulfide bonds in tau protein to deduce structural features of aggregation-resistant conformations. J. Biol. Chem. **287**, 9591-9600

https://doi.org/10.1074/jbc.M111.336107

Weisova P, Cehlar O, Skrabana R, Zilkova M, Filipcik P, Kovacech B, Prcina M, Wojciakova L, Fialova L, Smolek T, et al. (2019): Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol. Commun. 7, 129

https://doi.org/10.1186/s40478-019-0770-y

Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buee L, Lippens G, Landrieu I (2001): 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem. **276**, 25150-25156

https://doi.org/10.1074/jbc.M010327200

Yang JY, Yan RX, Roy A, Xu D, Poisson J, Zhang Y (2015): The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7-8

https://doi.org/10.1038/nmeth.3213

Zhang H, Zhu XY, Pascual G, Wadia JS, Keogh E, Hoozemans JJ, Siregar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): Structural basis for recognition of a unique epitope by a human anti-tau antibody. Structure **26**, 1626-1634

https://doi.org/10.1016/j.str.2018.08.012

Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019): Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases. Elife **8**, e43584

https://doi.org/10.7554/eLife.43584.040

Zhang WJ, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, et al. (2020): Novel tau filament fold in corticobasal degeneration. Nature **580**, 283-287

https://doi.org/10.1038/s41586-020-2043-0

Received: May 26, 2021

Final version accepted: July 13, 2021