Short Communication

Interplay among regulators of multidrug resistance in *Kluyveromyces lactis*

Zuzana Hodurova, Nora Toth-Hervay, Zuzana Balazfyova and Yvetta Gbelska

Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-2, 842 15 Bratislava, Slovak Republic

Abstract. The *KLYAP1* and *KLPDR1* genes encode two main transcriptional regulators involved in the control of multidrug resistance in *Kluyveromyces lactis*. Deletion of *KLPDR1* or *KLYAP1* genes in *K. lactis* generated strain hypersusceptible to diamide, benomyl, fluconazole and oligomycin. Overexpression of genes *KLPDR1* or *KLYAP1* from a multicopy plasmid in the *Klpdr1Δ* mutant strain increased the tolerance of transformants to all the drugs tested. YRE response elements were found in the promoter of the *KLPDR1* gene. Gel retardation assays confirmed the binding of *KLYap1p* to the YREs in the *KLPDR1* gene promoter indicating that *KLYap1p* can control the *KLPDR1* gene expression.

Keywords: Multidrug resistance — Oxidative stress — Transcriptional regulators — *Kluyveromyces lactis*

Abbreviations: MDR, multiple-drug resistance; MFS, major facilitator superfamily; PDR, pleiotropic-drug resistance; YAP, yeast AP-1-like; YNB medium, yeast nitrogen base medium; YPD medium, yeast extract/peptone/dextrose medium; YRE, yeast AP-1-like recognition element.

The cellular stress response is evolutionary conserved in all living organisms, a major role being attributed to the molecular mechanisms that confer stress protection. One of such mechanisms elicited by the cells in the presence of unrelated chemicals is referred to as multidrug resistance (MDR). The ability of cells to tolerate multiple different drugs is a major concern for human health, as it leads to antibiotic resistance in pathogens and enables cancer cells to survive chemotherapy (Kane et al. 1990). MDR in eukaryotes often result from changes in expression of membrane transport systems (Ling 1997). The MDR regulatory pathway has been extensively studied in the model yeast *Saccharomyces cerevisiae*. The expression of the transporter encoding genes involved in MDR is under the control of two regulatory networks: pleiotropic drug resistance (PDR) and yeast AP-1-like (YAP). They include specific transcriptional regulatory proteins containing zinc cluster (typically exhibiting a Zn(II)$_2$Cys$_6$ type of zinc finger) and basic region-leucine zipper (bZip)-sequence.

The PDR network in *S. cerevisiae* comprises 10 transcription factors regulating about 70 different target genes (Moye-Rowley 2003a; Fardeau et al. 2007). In this network, the Pdr1p transcription factor has the largest set of potential targets (about 50). Pdr1p and its functional homologue, Pdr3p, were identified as regulators of the basal level of drug resistance in yeast cells (Balzi et al. 1987; Delaveau et al. 1994). Gain- or loss-of-function alleles of *PDR1* and *PDR3* confer resistance or sensitivity to a large spectrum of unrelated drugs, through constitutive modifications to the expression of ATP binding cassette transporters, major facilitator superfamily (MSF) members or enzymes modifying the lipid composition of the plasma membrane (Kolaczkowska and Goffeau 1999). Although *PDR1* and *PDR3* display some functional redundancy they seemed to have quantitatively different contributions to drug resistance (Delaveau et al. 1994; Katzmann et al. 1994). Pdr1p and Pdr3p recognize the same DNA consensus motif (PDR – pleiotropic drug response element) found upstream of most genes regulated by these transcription factors (Katzmann et al. 1994; Dela-
hodde et al. 1995). Putative orthologs of PDR1 and PDR3 genes were identified also in genomes of other sequenced hemiascomytes yeast species (Dujon et al. 2004). In species that diverged before the occurrence of the ancestral whole genome duplication, such as Kluyveromyces lactis, only one ortholog has been identified (Busser et al. 2006; Balkova et al. 2009).

The YAP network contains 8 members involved in the oxidative stress response and drug resistance regulation in S. cerevisiae (Rodrigues-Pousada et al. 2004). The YAP1 gene encodes a 650 amino acid transcription factor that was initially isolated as a biochemical homologue of mammalian AP-1 (Harshman et al. 1988). Yap1p contains an amino-terminally located basic region-leucine zipper type of DNA-binding domain and has been extensively studied in regards to its role in oxidative stress tolerance. Yap1p binds to Yap1 recognition elements (YRE) TTA(C/G)T(A/C)A, located in the promoters of its target genes (Nguyen et al. 2001) and controls the expression of genes encoding the majority of antioxidants and thiol-oxidoreductases, such as the glutathione reductase GLR1 and the thioredoxin reductase TRR1 (Moye-Rowley 2003b; Herrero et al. 2008). Yap1p is also essential for the cell’s response to cadmium or drug exposures and can be activated by chemicals (e.g. diamide) or antifungal agents (e.g. benomyl) (Lucau-Danila et al. 2005). Upon changes in cellular redox status, Yap1p is rapidly recruited to the nucleus, where it activates the genes involved in cellular antioxidant defences and thiol redox control (Delaunay et al. 2002; Azevedo et al. 2003; Rodrigues-Poussada et al. 2004). Recently, the Yap1p ortholog in K. lactis has been characterized and shown to be involved in oxidative stress response (Billard et al. 1997).

In the present work we studied the role of KlYap1p in the control of K. lactis MDR.

Experiments were performed using the following strains: K. lactis PM6-7A (MATa uraA1 ade2 Rag+pKD1) and MW 179-1D (MATa lac4-8 uraA1-1 leu2 metA1-1 Ade-trp1 Rag+pKD1) (Chen et al. 1992) as well as PM6-7A/pdr1∆ (Balkova et al. 2009) and MW 179-1D/yap1∆ (Billard et al. 1997). Yeast strains were grown in YPD medium (in %: glucose 2, bactopeptone 1, yeast extract 1) or in YNB minimal medium containing 0.67% yeast nitrogen base without amino acids, 2% glucose and appropriate nutritional requirements. The media were solidified with 2% bactoagar. The KlPDR1 and KlYAP1 genes (Imrichova et al. 2005; Balkova et al. 2009) were cloned in multicopy plasmid pRS306K (2 µm URA3 ARS1 KARS2 ori Amp) (Heus et al. 1994) under the control of their own promoter. Yeast cells were transformed by electroporation (Thompson et al. 1998).

The Escherichia coli XL1-Blue strain was used as a host for plasmid constructions and propagation. The bacterial cells were grown at 37°C in Luria-Bertani medium (in %: tryptone 1, NaCl 1, yeast extract 0.5; pH 7.0) supplemented with 100 µg/ml ampicillin for selection of transformants.

Sensitivities of yeast cells to drugs were determined by spot assay. Yeast strains were grown in liquid medium to the early stationary phase (5 × 10^7 cells per ml). Serial dilutions (10-fold) of each strain were spotted onto solid minimal medium supplemented with various concentrations of the specific drug being tested. Qualitative growth differences among transformants were recorded.

Table 1. Kluyveromyces lactis orthologues containing predicted YRE

<table>
<thead>
<tr>
<th>ORF</th>
<th>Location relative to ATG</th>
<th>Matching sequence</th>
<th>Gene product role</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLLA0A09119g</td>
<td>-392 to -386</td>
<td>gttTTTGTAAaat</td>
<td>KlPDR1 (transcription factor)</td>
</tr>
<tr>
<td></td>
<td>-289 to -283</td>
<td>aaaTTACAAGcc</td>
<td></td>
</tr>
<tr>
<td>KLLA0C18931g</td>
<td>-454 to -448</td>
<td>acaTTAGTAAAtg</td>
<td>KlYAP1 (MFS transporter)</td>
</tr>
<tr>
<td></td>
<td>-721 to -715</td>
<td>gcgTTACTCAacct</td>
<td>Similar to S. cerevisiae PDR12 (ABC MDR transporter)</td>
</tr>
<tr>
<td>KLLA0B09702g</td>
<td>-890 to -884</td>
<td>accTTACTCAacct</td>
<td>Similar to S. cerevisiae PDR16 (protein involved in lipid biosynthesis and MDR)</td>
</tr>
<tr>
<td></td>
<td>-648 to -642</td>
<td>cggTTAGTCAagtt</td>
<td>Similar to S. cerevisiae TPO1 (polymine transporter)</td>
</tr>
<tr>
<td>KLLA0F18106g</td>
<td>-681 to -675</td>
<td>aaaTTAGTAAAtat</td>
<td>Similar to S. cerevisiae TPO1 (polymine transporter)</td>
</tr>
<tr>
<td>KLLA0E00462g</td>
<td>-791 to -785</td>
<td>tgaTTAGTAAaat</td>
<td>Similar to S. cerevisiae YBT1 (yeast bile transporter)</td>
</tr>
<tr>
<td></td>
<td>-600 to -594</td>
<td>tagTTTGTAAagc</td>
<td>Similar to S. cerevisiae RPN4 (transcription factor, stimulates expression of proteasome genes)</td>
</tr>
<tr>
<td>KLLA0D19668g</td>
<td>-341 to -335</td>
<td>gaaTTTGTAAagag</td>
<td></td>
</tr>
<tr>
<td>KLLA0C04103g</td>
<td>-52 to -46</td>
<td>aaaTTAGTAAAttg</td>
<td></td>
</tr>
</tbody>
</table>
K. lactis multidrug resistance regulators

Figure 1. Drug susceptibility testing of K. lactis strains. Spotting assays were performed with serial dilutions of overnight cultures onto YPD (yeast-extract peptone dextrose) or YNB (yeast nitrogen base) minimal medium containing different drugs as indicated. Plates were incubated for 3 (YPD) or 5 (YNB) days at 28°C.

Following the incubation of the plates at 28°C from three up to five days.

Formation of the Kl Yap1p-DNA complex in the protein-DNA binding assay was assayed by a gel retardation procedure according to Imrichova et al. (2005). The double stranded HindIII-HindIII DNA fragment of 511 bp from KIPDR1 promoter was labelled with 32P and incubated with cell extracts (see below) in 20 µl of incubation buffer (in mmol/l: 20 Tris-Cl (pH 8.0), 5 MgCl2, 5 CaCl2, 90 KCl, 0.5 dithiothreitol, 1 Na2EDTA, 7.5% glycerol and 2 µg of denatured salmon sperm DNA as a nonspecific competitor). Binding reactions were carried out at 4°C for 15 min and the reaction mixtures were loaded onto a 4% polyacrylamide gel in 0.5 × TBE buffer, pH 8.3 (in mmol/l: 45 Tris base, 45 H3BO3, 1.2 EDTA, 2% glycerol). After electrophoresis at 4°C, the gel was transferred to the surface of Whatman 3MM paper, dried and visualized by autoradiography. The cell extracts were prepared as follows: The yeast cells were grown in liquid minimal medium containing 2% glucose as carbon source. After the culture had reached the density of 2 × 10^7 cells per ml, cells were harvested by centrifugation and washed with extraction buffer (in mmol/l: 0.2 Tris-Cl (pH 8.0), 0.4 (NH4)2SO4, 10 MgCl2, 1 Na2EDTA, 7 β-mercaptoethanol, 1 phenylmethylsulfonyl fluoride (PMFS), 1 µg/ml pepstatin A, 10% glycerol). The cells suspended in the extraction buffer (1 ml for 1 g cells) were disrupted using ice-chilled, acid washed glass beads (0.45 mm in diameter). The broken cells were centrifuged for 30 min at 27 000 × g, and the supernatant fraction was collected and stored at −80°C until use.

The present work is focused on the role of the transcription regulators KIPdr1p and Kl Yap1p in K. lactis MDR.
Computer assisted analysis of the KlPDR1 gene promoter region identified two potential YREs at positions –283 and –386, respectively (Tab. 1). The presence of Yap1p recognition elements in the promoter of KlPDR1 suggests a direct interaction of KlYap1p with this promoter. Yap1p is already known as an essential factor in the response to oxidative stress (Moye-Rowley 2003b; Rodrigues-Pousada et al. 2004). Yap1p confers azole resistance in S. cerevisiae by activating expression of MFS proteins encoded by the ScFLR1 and ScATR1 genes (Kanazawa et al. 1988; Coleman et al. 1997). We have previously demonstrated that the KNYQ1 gene, the structural and functional ortholog of the ScATR1 gene encoding a multidrug transporter of the MFS in K. lactis, is a transcription target of KlYap1p (Takacova et al. 2004). The H2O2 and diamide-induced transcriptional activation of KNYQ1 is fully dependent on KlYap1p (Imrichova et al. 2005). As Fig. 1 shows, not only Kl Yap1∆ but also KlPdr1Δ mutant cells were sensitive to diamide and benomyl. On the other hand transformation of a drug sensitive Klpdr1Δ mutant strain which a plasmid-borne KlPDR1 or KlYAP1 genes, orthologs of which overexpress MDR transport genes in S. cerevisiae (deRisi et al. 2000), resulted in the tolerance of transformants to both drugs (Fig. 1). Although structurally unrelated, both diamide and benomyl have thiol reactive properties (Azevedo et al. 2003) and so they might similarly activate Yap1p through the chemical modification of its C-terminal cysteines (Azevedo et al. 2003). Deletion of KlPDR1 encoding the key transcription factor involved in K. lactis MDR resulted in an increased sensitivity not only to diamide and benomyl, but also to fluconazole and oligomycin. Transformants of the Klpdr1Δ mutant cells carrying the KlPDR1 or KlYAP1 genes on multicopy plasmids exhibited increased ability to tolerate the drugs tested. These results indicate that some of the target genes activated by KlPdr1p and/or KlYap1p transcription factors can participate in a process leading to a decreased intracellular level of the drugs in the K. lactis transformants. KlYap1p can alleviate the KlPdr1p deficiency and restore the normal level of K. lactis cell’s tolerance to the tested compounds. Based on the presence of YREs in the promoter region of KlPDR1 gene we tried to demonstrate the direct binding of KlYap1p to the KlPDR1 promoter.

We performed an electrophoretic mobility shift assay with a 32P-labelled probe (511 bp) derived from the KlPDR1 promoter overlapping the two putative YREs and protein extracts prepared from strains expressing the wild-type level of KlYap1p or containing deletion in the KlYAP1 gene (Klyap1∆). The presence of KlYap1p in the protein-DNA complex was demonstrated as follows: First, the complex was absent when protein extracts prepared from the Klyap1∆ strain were used (Fig. 2, lane C). Second, KlYap1p overexpression from a multicopy plasmid in the Klyap1∆ strain led to the appearance of a slowly-migrating complex (Fig. 2, lane D) that also appeared in the presence of protein extracts prepared from the wild-type strain (Fig. 2, lane B). The results suggest that the motifs identified by promoter analysis of the KlPDR1 gene are important for KlYap1p binding in vitro and could indicate a close cooperation of KlPdr1p and KlYap1p in K. lactis.

Finally, we looked for the presence of YRE elements in the promoters of the all K. lactis genes. We found at least 150 different KlYap1p target genes. Along with the genes encoding the antioxidants and thiol-oxidoreductases, such as thioredoxin reductase TTR1 ortholog (KLLAF15037g), we found the genes potentially involved in K. lactis MDR (Tab. 1) and more than 100 genes of unknown function.

In summary, this work describes novel regulatory association between transcriptional regulators in K. lactis. The association is presumably direct as suggested by the occurrence of putative KlYap1p transcription factor binding sites in the promoter region of KlPDR1 gene. KlYap1p has been shown to drive elevated levels of transcription of KlPDR1 as measured by use of a KlPDR1-lacZ reporter gene in S. cerevisiae (data not shown). We propose that KlYap1p, as a global regulator involves recruiting other zinc-cluster protein to fine-tune the regulation of MDR.

Figure 2. Binding of KlYap1p to the KlPDR1 gene promoter. 32P-labelled DNA probe overlapping both YREs was incubated with 30 µg of protein extracts prepared from strains MW197-1D(Yap1p) and MW197-1D/yap1Δ mutant or the MW197-1D/yap1Δ mutant transformed with multicopy plasmid containing KlYAP1. The resulting complexes were resolved by electrophoresis on 4% non-denaturating polyacrylamide gels. A. Free DNA (without protein extract). B. MW197-1D(Yap1p)-wild type. C. MW197-1D/yap1Δ. D. MW197-1D/yap1Δ + KlYAP1.
genes in this aerobic, biotechnologically important yeast species.

Acknowledgements. This work was supported by grants from the Slovak Grant Agency of Science (VEGA 1/0078/08), the Slovak Research and Development Agency (VVCE-0064-07) and Comenius University (UK/74/2010). Z. H., N. T.-H. Z. B. and Y. G. have no conflict of interest and no financial interest in the publication of this manuscript.

References

Nguyen D. T., Alarco A. M., Raymond M. (2001): Multiple Yap1p binding sites mediate induction of the yeast major facilitator...

doi:10.1007/s00294-003-0449-5

Received: October 15, 2010
Final version accepted: January 12, 2011