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Complexity Analysis of Electrocardiographic Signals
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Abstract. Two types of electrocardiographic data series were investigated using
appropriate tests based on a selection of semi-quantitative analysis algorithms.
Distribution histograms, power spectra, auto-correlation functions, state-space por-
traits, Lyapunov exponents and wavelet transformations were applied to electrocar-
diograms of normal and stressed subjects. Statistical analysis using the Student’s
t-test revealed significant and non-significant alterations in stress-loaded cases com-
pared to normal ones. Higher levels of adrenaline may account for a more complex
dynamics (deterministic chaos) revealed in the stressed subjects.

Key words: Electrocardiographic data — Deterministic chaos — Stressed subjects

Introduction

Recordings of electrical activity of the main vital organs are important physiologi-
cal investigation tools for medical researchers, but also for biophysicists. Electroen-
cephalograms, electrocardiograms, electromyograms and electroretinograms (May
1991; Goldberger 1999; Arita 2001; Dafilis et al. 2001; Arita et al. 2002) are more
or less present in day-to-day diagnostics of numerous patients. Application of chaos
theory to the electroencephalographic signals (May 1991) has generated the high-
est and earliest interest in both medicine and physics (for instance the emphasis
of distinct degrees of complexity in normal and epileptic subjects: dominant quasi-
periodic behavior of brain was revealed in pathologic cases, while chaotic behavior
was found in normal ones).

One of the first applications of nonlinear methods to analysis of the effect of
emotions on heart physiology was reported in the 1990s (Reidbord and Redington
1992).

Among the most recent reports regarding the non-linearity of the electrocar-
diographic (ECG) signal we mention:

— the study of cardiac arrhythmia (Lass 2002),
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— the evidence of changes in heart rate variability during induction of general
anesthesia (Pomfrett 1999; Sleight and Donovan 1999),

— the study of respiratory influences on the non-linear dynamics of heart rate
variability (Fortrat et al. 1997),

— the study of heart rate variability in different generations (Yoshikawa and
Yasuda 2003),

— the discrimination of healthy patients from those with cardiac pathology based
on wavelet analysis of heartbeat intervals (Thurner et al. 1998),

— the theoretical investigation of turbulence (Lin and Hugson 2001) and non-
stationarity in human heart rhythm (Bernaola-Galvan et al. 2001).
In this paper, we present the results obtained in the analysis of two series of

ECG signals recorded on healthy subjects in different emotional conditions.

Materials and Methods

A laboratory device was designed and assembled to record electrocardiograms (Cre-
anga et al. 2000) in digital version (signal sampling with a frequency of 500 Hz).

According to Scheme 1, the input signal is amplified (by a specialized low-noise
amplifier) and passed through a low-pass filter (to improve the signal-to-noise ratio)
and further processed by an analogue-digital converter connected to a PC system.

The input part is completely galvanically separated from the output part to
ensure absolute protection of patients.

Two lots of ten recordings each were taken for comparative investigation in
normal and emotionally stressed subjects. (Normal physiological state was assigned
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Scheme 1. The block scheme of the ECG recording device: DA, input amplifier (INA 114
type element from Burr-Brown (Texas Instruments)); TAA (ISO 120), insulator amplifier;
ADC, analogue-to-digital converter (ADS 7808); PC, computer system; PS, stabilized
power supply; S1, specialized stabilizer for the input circuits; M, display unit (computer
monitor).
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to young healthy students invited as volunteers for ECG recording, while emo-
tional stress was induced in the same subjects by subjecting them later to a non-
announced test of evaluation of their activity). The linear and non-linear computa-
tional tests have been applied to series of 10,000 data each. The paired two-tailed
Student’s t-test was applied using the MS Excel program to compare the normal
and stress-loaded cases.

Recording of the ECG followed the non-invasive standard technique and the
human subjects have given their consent to take part in the study.

Theoretical Background

The strategy we followed in our analysis was mainly that proposed by Sprott and
Rowlands (1994):

Graphic plot of data series

First, the graph of the studied data series f(¢) must be visualized and interpreted;
numerical smoothing can be applied if appropriate, but some loss of intrinsic in-
formation may be expected together with the noise reduction.

Power spectrum

Further, the Fourier spectrum is to be studied in the linear-log representation (log P
versus frequency, P being the power, i.e. the square of the amplitude; Nyquist fre-
quency may be considered, i.e. the inverse of the distance between two consecutive
points). For different mathematical representations of studied signals, different defi-
nitions of the Fourier transform should be used; considering the intrinsic periodicity
of heart signals, the next formula have been chosen:

fit) = Z ay, exp(iwp,t)
h 27w

a(w) = (w/27) / F(t) exp(—iwt)dt

0

where f is the decomposed signal, and a,, or a(w) are amplitudes of the Fourier
transform.

A flat shape of the graph In P(f(t)), where P(f) is spectral power (the square
of the amplitude a,, of the harmonic component with frequency w,,) indicates ran-
dom fluctuations, several dominant peaks correspond to quasi-periodic data, and
a coherent decrease in ln P(f) is a hallmark of hidden determinism (determin-
istic chaos), i.e. a more complex evolution. Basically, the power spectrum pro-
vides the same details about the system as the auto-correlation function, ¥(t) =

[ f(t+7)f(r)dr, but from a different point of view.
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Auto-correlation function

While power spectrum is focused on the main frequencies, auto-correlation function
informs about intrinsic connections between data. The value 7 at which the auto-
correlation function reaches 1/e (e = 2.71...) of its initial value is the correlation
time of the time series. The function ¥(t) decreases rapidly to zero for random
data but also for some chaotic series formed by data that are not apparently cor-
related with each other. Nevertheless, there are chaotic data governed by strong
connections and for them the auto-correlation function slowly decreases with time
lag.

The portrait in the state space

The state-space portrait: in case of a dissipative system, the state space is an
m-~dimensional hyperspace formed by all system parameters, but the state-space
portrait can be reconstructed using a single variable (measurable at equal time
steps), x(t) (Takens 1981). Often the computational algorithms used in investiga-
tions of system dynamics are based on delay coordinates in the form x(t)/x(t — 1),
which are able to provide information on the system attractor — the equilibrium
states toward which the system may evolve starting from different initial conditions
but following the same laws. The attractor appears as a complex object having the
shape of a loop for a periodic system, a torus for a quasi-periodic system, and a
complicated object (yet with a discernible shape) for a more complex dynamics.

The correlation dimension

The fractal dimension attached to the attractor may be calculated in many ways,
for instance using the correlation dimension algorithm. The basic idea is to con-
struct a function C(r), which is the probability that two arbitrary points on the
system trajectory shaped in the state space are closer together than r (r being the
radius of a hypothetical hypersphere drawn to cover the attractor) (Grassberger
and Procaccia 1983). This is usually done by calculating the distance between every
pair of N data points and sorting them into bins of width dr proportional to r. The
correlation dimension is given by

_ i dlog C(r))
Cp = dITITO d(logr)

where one must consider r tending to 0, and N tending to infinity.
The embedding dimension

Beside the “fractal dimension”, another non-conventional meaning of the term “di-
mension”, useful in the analysis of system dynamics is the “embedding dimension”,
which can be used to examine the geometrical structure formed in the state hy-
perspace similarly to microscopic investigation of a real object. Such as different
details of a small spot become distinguishable on different microscope scales (or,
on the contrary, a different set of neighbour points become a single spot), in the
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case of embedding dimension equal to m, for instance, successive m tuples of data
are treated as points in the m-space. According to Kumar et al. (1999), the embed-
ding dimension (m) measures the density of the attractor finding the probability
of one point within a certain distance R from another point. When the correla-
tion dimension of the attractor (measuring the number of pairs of points that are
within the limit of distance R) stabilizes to a certain value for m, then the system
is chaotic (if no stabilization occurs, then randomness is suspected to govern the
system dynamics).

Trajectory divergence

Lyapunov exponents represent a way of measuring the dynamics of an attractor by
means of divergence of close trajectories. If two close points x,, and z,, + dz,, at a
certain time step (let us say n'® step) are belonging to two close orbits, then at the
next time step (n + 1) they will evolve to z,,+1 and x, 1 + dz, 41, respectively, so
the measure of their divergence is:

1 N dx
T L n+1
A_J\;LnloNZi_lln( dz, >

When dz,, is infinitesimally small, the use of the Taylor series expansion becomes
appropriate which involves the utilization of the derivatives.

The Lyapunov exponent can be calculated for each dimension, but usually only
the largest exponent is considered for dynamics interpretation. A positive exponent
indicates a sensitive dependence on initial conditions, or that our forecasts can di-
verge fast when based upon different estimates of starting conditions. If a Lyapunov
exponent is positive then the system is chaotic and unstable, the magnitude of the
Lyapunov exponent being a measure of the sensitivity to initial conditions, the pri-
mary characteristic of a chaotic system. If the Lyapunov exponent is less than zero
then the system attracts to a fixed point or stable periodic orbit (periodic orbits
are identified by their negative Lyapunov exponent) and the absolute value of the
exponent measures the degree of stability.

Wavelet maps

The wavelet transformation (Daubechies 1996) offers the possibility to reconstruct
the function of interest f(¢) as a linear combination of soliton-like functions:

F@6) = en¥n(t)
ok

The basis functions are obtained from a single soliton function (mother wavelet
function) by translation and dilatation operations. Analogously to the Fourier
transform coefficients, the wavelet transform coefficients are:

cik = Wa flaai w2y
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The projection of the wavelet transform in the (T, DT) plane (time and time scale
or observation magnitude) is a 2-dimensional (2-D) picture with specific symmetry
for chaotic, quasi-periodic, and random data. The stepwise Haar function was used
as mother wavelet in this study:

U(x)=< —1 when 1/2 <z <1

{ 1 when 0 <z <1/2
0 otherwise

and: ¥ (x) = V(272 — k), where j is a non-negative integer and 0 < k < 27 —1. So
the analyzed function can be reconstructed as a superposition of rectangular sig-
nals, while the Fourier transformation is based on harmonic functions. The wavelet
transformation represents a generalization in 3-D coordinates of the Fourier trans-
formation: it maintains the time (rather than the frequency) as abscissa; the 2-D
projection involves time as abscissa and the time scale as ordinate. The wavelet
analysis was successfully utilized in investigations of heart rate fluctuations, for
example by Bracic-Lotric et al. (2000) and Kimura et al. (1998), while the studies
of Toledo et al. (1998, 2003), Pichot et al. (2001) can be mentioned as examples of
applications to clinical problems.

Return maps

Since a 2-D phase-space plot may be not sufficient to distinguish between random
and chaotic data, it would be useful to visualize some cross-sections of the phase
plane in order to reduce its dimension by one (Poincar sections). Every point has
as coordinates the value of X at the time at which X’ equals a constant versus
the value of X at the previous time at which X’ equaled the same (controlled)
constant. After such an operation, chaotic data will often appear in the form of a
strange attractor having a fractal structure.

Surrogate data

Besides the computational tests presented above, there are also some other possi-
bilities to investigate non-deterministic complexity, among them surrogate data
(Schreiber and Schmitz 2000) and recurrence plots (Webber and Zbilut 1994;
Babinec et al. 2002), considered as the most promising approaches of chaos analysis.

Once you have found evidence of determinism in your data, it is recommended
to repeat the tests using surrogate data that resemble the raw data series but
that lack determinism. If the results are the same, then the conclusion formulated
regarding the initial data can be taken as good. To generate surrogate data for
analysis of nondeterministic complexity, the raw data values may be simply shuffled,
this way the probability distribution does not change, though, in general, the power
spectrum and correlation function change considerably.
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Results and Discussion

According to the analysis strategy suggested by Sprott and Rowlands (1994), the
ECG signals of relaxed and stressed subjects have been comparatively studied by
means of a selection of linear and non-linear tests.

The discussion is focused on the semi-quantitative tests due to the convenient
comparison of numerical data instead of qualitative description.

ECG graphs

The graphs of ECG signal amplitude versus time are given in Figure 1 (raw data);
numerically smoothed data are also discussed in some paragraphs. In the normal,
relaxed subjects (Fig. 1, left) the ECG signal exhibits the QRS wave triplet (a
short duration and high amplitude depolarization between two rapid and small
amplitude hyperpolarizations), followed by a remarkable T wave. The P wave,
normally preceding the QRS triplet, has small amplitude, being screened by the
recording noise.

In the stressed subjects (Fig. 1, right), the P wave is higher, but because of
the much shorter time interval between two consecutive signals (about three times
less than in the ECG of a relaxed subject), it is partially overlapping the T wave
of the previous ECG signal.

ECG power spectra

The power spectrum is dominated in both situations by a large plateau in the range
of high frequencies, which is characteristic of fluctuating signals. In the range of
small frequencies, a high amplitude peak is present in both cases (Figure 2). But
in the range of small and medium-small frequencies, one can see a rather linear
decrease in spectrum amplitude with frequency in normal subjects (Fig. 2, left),

K vy

200
2 | X0

[l
=0 i ‘

100
100

normal 50
L]
stressed
Tims) 0 T ()
1} 200 400 G 0 pLIlin) LiDD
0 q L . N . B ] 20 an 350

Figure 1. ECG signals in relaxed (left) and stress-loaded subjects (right). X, the electric
potential; T, the time.
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Figure 2. Power spectrum for normal subjects (left) and stress-loaded cases (right). log P,
decimal logarithm of the power; f, the frequency.

while in stress loaded cases (Fig. 2, right) this quasi-linearity is not pronounced.
Thus, a chaotic trend is evident in the small-medium frequency range for normal
subjects, but not in the stressed ones. According to Takens (1981), power spectrum
analysis is a linear analysis tool thus presuming that the ECG signal is a result
of signals emitted by many generators (heart muscle cells), each producing a sine
signal with different amplitude, frequency, and phase. Since the heart activity may
be expected to be rather complex (in spite of its apparently periodic dominant),
non-linear computational methods are of interest too.

Auto-correlation functions and auto-correlation times of the ECG signals

Auto-correlation functions tend to decrease slowly with wave-like variations of am-
plitude (Figure 3), revealing clearly the quasi-periodic trend, which is dominant in
both analyzed groups. In normal cases (Fig. 3, left), there is a slower decrease in the
auto-correlation function amplitude compared to stressed subjects (Fig. 3, right),
where a more rapid decrease is visible, meaning that a stronger temporal correla-
tion exists between the data representing the activity of a normally relaxed heart.
The auto-correlation time 7 (the time during which the auto-correlation function
decreases to 1/e of its initial value) provides a quantitative measure of this situa-
tion. Indeed, there is a remarkable decrease in average values in the stressed heart:
from 63.68 (normal condition) to 9.45 (emotional stress) (in Figure 3, the two ex-
ample values are 67.170 and 8.579). This difference between the average values
for two groups of ten subjects can be considered as significant: in the emotion-
ally affected subjects, the average value is about seven times smaller than in the
normal subjects (Table 1). Once again, the chaotic trend, i.e. a higher degree of
complexity, is characteristic of a normal ECG signal, while for the other situation
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Figure 3. Auto-correlation function f and auto-correlation time 7 in normal (left) and
stress-loaded cases (right).

Table 1. Statistical analysis by means of the Student’s t-test

Computational results for two groups of ten subjects each
No. Correlation dimension Auto-correlation time | Lyapunov exponent
Normal Stressed Normal Stressed Normal Stressed
1 2.336 2.580 67.17 8.57 0.146 0.112
2 2.388 2.312 76.82 6.34 0.156 0.134
3 2.093 2.467 82.87 15.98 0.133 0.111
4 2.741 2.781 54.67 9.45 0.137 0.176
5 2.424 2.387 97.23 3.98 0.11 0.087
6 2.294 2.601 49.99 9.12 0.176 0.154
7 2.398 2.467 45.87 13.09 0.165 0.098
8 2.671 2.802 87.12 10.11 0.156 0.165
9 2.122 2.482 35.01 3.12 0.187 0.094
10 2.201 2.583 40.12 14.76 0.108 0.101
Average 2.151 2.314 63.68 9.45 0.147 0.123
Student’s t-test probability p
0.010358 3.1967E-05 0.066212 (n. s.)

n. s., non-significant

a smaller correlation between neighboring data is found. The #test provides a high
statistical significance of this difference (p < 0.001, where p is the probability that
the statistical parameter ¢ assumed the observed value by chance in case the two
groups are in fact equal). After smoothing the raw data, the auto-correlation times
increase by about 10% in both groups.

ECG attractors

The state-space portrait, re-constructed (Crutchfield et al. 1986) using a single
parameter of the system (ECG amplitude), is rather similar in the two groups of
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Figure 4A,B. The portrait in the state space: normal subjects (A), stressed patients
(B). X, ECG potential; X', first derivative.

recordings for numerically smoothed data (Figure 4). A complex fuzzy loop seems
to indicate the dominance of a quasi-periodic dynamics accompanied by certain
fluctuations, either intrinsic to the heart complex activity or introduced by the
recording noise. Thus the strange character of this signal attractor is not clearly
visible (Fortrat et al. 1997) and neither is a difference between the two groups
presented in Fig. 4A and B.

ECG fractal dimension

The non-linear dynamics of the ECG signal could be revealed by the correlation
dimension expressing the fractal character of the complex object formed in the
state space by the ECG attractor (Table 1). The correlation dimension may be
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Figure 4C,D. The return maps (Poincaré sections): normal subjects (C), stressed pa-
tients (non-tracked points) (D).

used to describe system non-linearity (Igekuchi and Aihara 1997), a more complex
system having a higher correlation dimension corresponding to a higher number
of parameters or degrees of freedom necessary to describe the system features.
Jing and Takigawa (2000) discussed the complexity of electric activity of the brain
by calculating the correlation dimension for the electroencephalographic signal on
twelve subjects and outlined the non-linear character of the neural system.

ECG return maps

The Poincaré sections (where the constant is equal to 0.5) are able to provide a
supplementary view of the attractor structure, such as shown in Fig. 4C and D (con-
secutive data are not tracked between them in contrast with the graphs in Fig. 4A
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and B). In both discussed cases, the points are symmetrically disposed around the
first bisectrix, bigger dispersion as well as enlarged substructure lobes of the at-
tractor section being evident in the stressed heart (an observation in agreement
with Fig. 4A and B, but more detailed).

Fractal dimension versus embedding dimension

The attractor fractal dimension, evaluated for smoothed data using the algorithm
of the correlation dimension, is presented in Figure 5. Saturation tendency was
remarked to the increase in the embedding dimension in the range of 1 to 10, the
saturation value being smaller for normal subjects (for example 2.336, (Fig. 5, left)
in comparison to 2.580, (Fig. 5, right) for two specific subjects).

According to Table 1, where average values are given, in the normal subjects
the correlation dimension is 2.151, while in emotionally stressed patients the corre-
sponding value is 2.314. The influence of signal noise was found remarkable, since
in the raw data, the auto-correlation dimension was over 4, unacceptable for the
size of the data series, so that smoothing was necessary. In Table 1, all the val-
ues corresponding to the two studied ECG groups are given. To see whether the
difference between the average values is significant, the t-test was applied and the
probability p was found equal to 0.010, meaning statistical significance at the level
of 0.01.

ECG trajectories divergence

The largest Lyapunov exponent values seem to not differ much between the two
groups of ECG recordings. The average values are 0.147 and 0.123, suggesting an
increase in the stressed subjects, but the difference between the two average values
does not seem to be significant statistically (Table 1).
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Figure 5. CD for ECG recorded in normal humans (left) and stressed ones (right) —
numerical smoothed data. CD, correlation dimension; D, embedding dimension.
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The t-test provided a small p value (0.061) exceeding the statistical significance
level (0.05), so the difference cannot be considered statistically significant in this
situation. We conclude that the computational test based on the largest Lyapunov
exponent did not reveal the influence of stress on the heart activity.

ECG wavelet transformations

Wayvelet analysis led to the Haar wavelet diagrams presented in Figure 6. The charts
of this figure should be understood considering that the gray scale from white to
black corresponds to the function values (on the third coordinate axis) ranging
from zero to the maximum.

For low time scales (small DT values), the periodic trend is the dominant
behavioral component in both cases whatever the time value is considered (grey
fields alternating with white ones); for stressed subjects, the frequency of color
fluctuation is higher. When the observation scale increases, the complexity of the
3-D function projection increases too: two structures shaped for low as well as for
high time values corresponding to two peaks (black areas correspond to high wavelet
function values) with crater shape (white areas surrounded by black ones). In the
normal subjects (Fig. 6, left), the wavelet transform chart presents more symmetry
and regularity, while for the stressed subjects (Fig. 6, right), the structures revealed
by the wavelet diagrams are more contorted, corresponding to the higher degree of
fluctuations visible also in Figs. 1 and 2.

It is difficult to say, however, if the apparently higher degree of symmetry in
the normal ECG signal can be taken actually as an evidence of its higher complexity
or not.
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Figure 6. Wavelet transform for normal subjects (left) and for stressed subjects (right).
T, time; DT, time scale.
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Figure 7. The surrogate data. Return maps (Poincaré sections): normal subjects (left),
stressed patients (right).

Surrogate data of ECG signals

In comparison to the initial data series, the surrogate data exhibited different power
spectra, wavelet graphs and correlation functions, as expected following the raw
data shuffling. The Poincaré sections seem to be the most helpful graphs (Figure 7),
since the discernable shape of the system attractor is revealed in both cases, while
for the stressed subjects (Fig. 7, right) the fuzzy feature is more visible than for the
normal subjects. We may say that more symmetry in the structure of the Poincaré
section is visible in the case of normally relaxed subjects (Fig. 7, left), which is in
accordance with the smaller value of the attractor fractal dimension.

In conclusion, the above results indicate that the complex dynamics of heart
activity is significantly influenced by stress load as shown by means of the correla-
tion dimension, Poincaré sections, and auto-correlation times.

The physiology of the stress hormone, adrenaline, might be invoked for a physi-
ological comment related to the interpretation of the results of the semi-quantitative
analysis carried out on electrocardiogram data.

Conclusion

Though the semi-quantitative tests applied to the ECG signal analysis are not able
to provide specific information regarding the intrinsic mechanisms of the heart,
they might lead to a more “coloured” picture of the modifications induced by
the physiological condition of stress. The human heart remains a complex system
with non-stationarity features, though the classical view is focused on the quasi-
periodic character of its activity. The interpretation based on chaos theory seems
to be rather adequate for the theoretical approaches of heart non-linear pulsation
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and the future could show us clinical diagnostic and prognostic applications derived
from new semi-quantitative tests that are expected to be devised.
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