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Mechanistic Equations for Membrane
Transport of Multicomponent Solutions

G. Suchanek

Institute of Physics, Świȩtokrzyska Academy, Kielce, Poland

Abstract. In the present article, mechanistic equations for membrane transport
of N + 1-component solutions have been derived. The major specific investigation
result is the introduction – for ternary solutions – of two diffusion coefficients
ωd1 and ωd2 for solutes, as well as two cross coefficients ωd12 and ωd21 for these
solutes. The latter parameters may be treated as coefficients of interdiffusion. The
expansion of the description of substance transport to include the N+1-component
solutions does not formulate any additional physical phenomena other than those
which are formulated by the transport equations for three-component solutions.

Key words: Porous membranes — Multi-component solutions — Transport pro-
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Introduction

The Kedem–Katchalsky (KK) equations describe the transport of a solvent and a
single solute across a membrane which is in the literature referred to as a “black
box” (Kedem and Katchalsky 1958; Katchalsky and Curran 1965). This label means
that, with the use of the phenomenological thermodynamic formalism (which pro-
vides the basis for the KK equations) it is impossible to obtain or write any infor-
mation pertaining to the internal structure of the model membrane. Due to this, the
KK equations are mainly applied to membranes which are homogeneous in terms
of their transport properties. However, in order to describe the transport across
membranes of specified structure, mechanistic phenomenon models are built, thus
putting the KK equations in the role of a thermodynamic standard to serve the
purposes of verification of already-existing mechanistic equations (Katchalsky and
Curran 1965).

In recent years, several papers on the so-called mechanistic equations for
porous membrane transport have been published (Kargol and Kargol 2000, 2003a,b,
c; Kargol 2001, 2002). These equations have been derived on the way of mechanistic
considerations. They are based on the model of a porous heterogeneous membrane,
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i.e. a membrane whose pores differ in their cross-section radiuses. (If a membrane
contains pores of the same radiuses, it is to be treated as homogeneous in terms
of transport properties.) With a view to the internal membrane structure, these
equations enable a more profound interpretation of membrane transport processes
than the very general KK formalism.

Owing to the fact that the practical KK equations and the mechanistic equa-
tions offer different interpretations of the diffusion permeability coefficient ω (ωd)
(Kargol and Kargol 2000, 2003a,b,c; Kargol 2001, 2002) both of these descriptions
have been for a long time treated as alternatives. In the recent paper (Suchanek
2005), I have demonstrated that both of the above equation systems are equivalent;
moreover, that the mechanistic equations may be derived from the phenomenolog-
ical KK equations, given certain conditions. This result enables the solution of
another problem – the one signalled in the title of the present paper.

Because in research practice (in biology in particular) we deal with membrane
systems with complex solutions, it seems reasonable to extend the mechanistic
equations in such a way that they can be used for investigations into transport
properties of these very systems. The solution of the arising problems on the way
of mechanistic considerations, in a manner analogous to the papers (Kargol and
Kargol 2000, 2003a,b,c; Kargol 2001, 2002), is a difficult task (if at all possible).
That is because, in the case of occurrence of many components in the solutions,
numerous concentration stimuli are generated on the membrane, and – consequently
– processes, conjugated and cross, occur.

However, it is possible to derive the mechanistic transport equations for com-
plex solutions from the thermodynamic phenomenological equations. As has al-
ready been suggested, a similar procedure has been used with reference to binary
solutions (Suchanek 2005). As we know, the linear phenomenological equations can
bind any number (N) of forces and thermodynamic flows (Katchalsky and Curran
1965; Kargol et al. 1987). An increase in the number of solution components brings
a corresponding increase in the number of thermodynamic stimuli and flows in the
system, as well as the number of the coefficients which bind them.

The extended equations ought to also include the phenomenon of mutual diffu-
sion (Kargol et al. 1987; Slezak and Turcznski 1992), which results from the presence
of two or more solutes in the solution. Below, starting from the phenomenological
equations (in their adjusted form (Suchanek et al. 2005a,b)), we shall derive mech-
anistic equations for complex solutions. First of all, transport across the membrane
which separates ternary solutions will be discussed.

Basic phenomenological equations

Phenomenological equations which describe transport across the membrane which
separates binary solutions may be written in the following form (Kedem and
Katchalsky 1958; Katchalsky and Curran 1965):

Jv = Lp∆P + LpD∆Π (1a)

JD = LDp∆P + LD∆Π (1b)
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or, alternatively, in their “adjusted” form (Suchanek 2005; Suchanek et al. 2005a,b):

Jv = Lp∆P − LpD∆Π (2a)

JD = −LDp∆P + LD∆Π (2b)

In both of the above equation systems, Lp, LpD, LDp and LD denote coefficients
(of filtration, osmotic transport, ultrafiltration and diffusion, respectively), while
cross coefficients satisfy Onsager’s law: LpD = LDp ·∆P and ∆Π denote pressure
differences (mechanical and osmotic).

In the Eqs. (1a) and (1b) for membranes whose σ > 0, the cross coefficient
LpD is a negative value (LpD < 0). This fact follows from the arbitrary decision
of Staverman (Kedem and Katchalsky 1958; Katchalsky and Curran 1965), who

defined the membrane’s reflection coefficient as σ = −LpD
Lp
.

However, in the formulas (2a) and (2b), referred to in the literature (Suchanek
2005; Suchanek et al. 2005a,b) as adjusted equations, the cross coefficient is positive

(LpD = LDp ≥ 0 for σ > 0), while the reflection coefficient is defined as σ =
LpD
Lp
.

Both of the above possibilities result from the conditions imposed on the signs
of phenomenological coefficients by thermodynamics of irreversible processes. These
conditions have the following form (Kedem and Katchalsky 1958; Katchalsky and
Curran 1965):

Lp ≥ 0, LD ≥ 0 and L2pD ≤ LpLD

As can be seen, they are unambiguous only in their determination of the + sign of
single coefficients, but they do allow both the + and − signs of the coefficient LpD.

Taking as a starting point the phenomenological equations (either in the form
(1a), (1b), or in the form (2a), (2b)), as a result of the procedure offered by Kedem
and Katchalsky (1958), Katchalsky and Curran (1965) and Kargol et al. (1987), it
is possible to arrive at the well-known practical form of the KK equations:

Jv = Lp∆P − Lpσ∆Π (3a)

js = ω∆Π+ Lp(1− σ)c̄Jv (3b)

As has been shown in the paper (Suchanek 2005), in order to derive the mechanistic
equations (for solutions with any number of components), it is convenient to start
from the equations written in the form (2a) and (2b).

Mechanistic equations pertaining to ternary solutions

We shall begin the derivation procedure of mechanistic equations for membrane
transport for ternary solutions (consisting of solvent and two solutes) with the
notation of the adjusted phenomenological equations for three components. In the
light of Eqs. (2a) and (2b), they will take the following obvious form:

Jv = Lp∆P − LpD1∆Π1 − LpD2∆Π2 (4a)

JD1 = −LD1p∆P + LD1∆Π1 + LD12∆Π2 (4b)

JD2 = −LD2p∆P + LD21∆Π1 + LD2∆Π2 (4c)
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in which ∆P denotes the mechanical pressure difference, ∆Π1 is the osmotic pres-
sure difference generated by the s1, and ∆Π2 is the osmotic pressure difference for
the substance s2, Jv in turn is a volume flow here, JD1 is a diffusion flow of the
substance s1 and JD2 is a diffusion flow of the substance s2.

In the above equations, the flows and forces are linked by means of nine phe-
nomenological coefficients, denoted in the above equations by the letter L. Accord-
ing to Onsager’s law (Kedem and Katchalsky 1958; Katchalsky and Curran 1965),
cross coefficients of these equations are subject to the following relations:

LpD1 = LD1p, LpD2 = LD2p and LD12 = LD21 (5)

The number of independent phenomenological coefficients in Eqs. (4a), (4b)
and (4c) decreases, as a result of the validity of the relation (5), to six.

The coefficients LpD1 = LD1p, LpD2 = LD2p may be defined by means of
Eqs. (2a) and (2b) for the substances s1 and s2, respectively, while the parameter
LD12 = LD21 = LDW denotes the mutual interaction of both solutes, and is defined
by Eqs. (4a), (4b) and (4c). Due to the physical interpretation of this coefficient
(resulting from the analysis of the above-mentioned equations), it has been called
the coefficient of inter-diffusion (Kargol et al. 1987).

At this stage of reasoning, it must be stressed that Eqs. (4a), (4b) and (4c) still
pertain to the homogeneous membrane whose transport parameters are constant
at each point.

Figure 1. Model membrane system: M, heterogeneous membrane; I, II, compartments;
P1, P2, mechanical pressures; CIs1, C

I
s2, C

II
s1, C

II
s2, concentrations; Jav , J

b
v , Jcv , volume flows

permeating across Parts (a), (b), (c) of the membrane, respectively; jbs1, j
c
s1, j

c
s2, “net”

solute flows.
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Let us now consider a membrane system as presented in Fig. 1, which contains
a heterogeneous porous membrane M, characterised by the properties discussed in
Introduction to the present article.

We assume that all the coefficients which appear in the phenomenological
Eqs. (4a), (4b) and (4c) (i.e. Lp, LpD1 = LD1p, LpD2 = LD2p and LD12 = LD21),
may only be positive or equal to zero because they describe a mechanistic porous
membrane now. In order to facilitate our considerations, let us assume here that
individual pores have been – for the sake of a model – arranged in one direction,
starting with the smallest pores (at the top), down to the largest pores rN (at the
bottom). In a real membrane of this kind, pores are randomly arranged.

With regard to the membrane of the system, it is possible to find two such
solutes s1 and s2 with molecule radiuses rs1 and rs2, respectively (rs1 < rs2), which
satisfy the relations: r1 < rs1 < rN , rs1 < rs2 < rN . Consequently, the relation
r1 < r2 is also valid.

In view of these assumptions, the membrane may be divided into the Parts
(a), (b) and (c). Naturally, only the solvent can flow across the Part (a), which
contains na pores whose radiuses r < rs1 < rs2, (cf. Fig. 1). Across the Part (b)
of the membrane which contains nb pores whose radiuses rs2 > r > rs1, both the
solvent and the solute s1 permeate. Finally across the Part (c) of the membrane
which contains nc pores whose radiuses r > rs2, all the three substances which
make up the solution can pass.

The above presented membrane may, in fact, be formally treated as three
parallell connected membranes (a), (b) and (c) with various filtration coefficients
Lpa, Lpb and Lpc, respectively. In the situation at issue, the total volume flow
across the membrane amounts to:

Jv = Jav + Jbv + Jcv (6a)

The total diffusion flows of the solutes across the membrane equal, respectively,

JD1 = JaD1 + JbD1 + JcD1 (6b)

JD2 = JaD2 + JbD2 + JcD2 (6c)

Our analysis of this system will begin with the application of the phenomenological
Eqs. (4a), (4b) and (4c) to the description of individual Parts of the membrane (a),
(b) and (c).

The Part (a) of the membrane is semi-permeable. It is obvious that for this
Part of the membrane ∆P = ∆Π1 +∆Π2, if Jva = 0.

In view of the above, in accordance with Eq. (4a), the equality Lap = LapD1 =
LapD2 must be satisfied. However, due to the fact that solutes do not diffuse across
this part of the membrane, the diffusion flows of the substances s1 and s2 equal
zero. Consequently, Eqs. (4a), (4b) and (4c) which describe the transport across
the Part (a) of the membrane, are reduced to the form:

Jav = Lap(∆P −∆Π1 −∆Π2) (7a)
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and

JaD1 = 0 (7b)

JaD2 = 0 (7c)

In the Part (b) of the membrane, due to the fact that only the substance s1
permetates across the pores, (which are impermeable to the substance s2), Eqs.
(4a), (4b) and (4c) shall be reduced to the following forms:

Jbv = Lbp∆P − Lbp∆Π2 (8a)

JbD1 = LbD1∆Π1 (8b)

JbD2 = 0 (8c)

In Eq. (10b), the cross coefficients LbpD1 = LbD1p (which are linked to the mem-
brane selectivity for the solute s1 and the solvent) equal zero, since the membrane
in its Part (b) is non-selective. Also, the coefficient of interdiffusion LbD1D2 of both
solutes obviously equals zero.

The Part (c) of the membrane is permeable to both the two solutes and the
solvent. In this case, the cross coefficients, which satisfy the relation LcpD1 = LcD1p,
LcpD2 = LcD2p also equal zero, due to reasons specified above. Diffusion coefficients
LcD1, L

c
D2 and interdiffusion coefficients LcD1D2 = LcD2D1 are nonzero.

This means that Eqs. (6a), (6b) and (6c) for the Part (c) of the membrane
assume to the following form:

Jcv = Lcp∆P (9a)

JcD1 = LcD1∆Π1 + LcD12∆Π2 (9b)

JcD2 = LcD2∆Π2 + LcD21∆Π1 (9c)

The total volume flow across the membrane, according to Eq. (6a) as well as the
expressions (7a), (8a) and (9a), amounts to:

Jv = (Lap + Lbp + Lcp)∆P − Lap∆Π1 − Lap∆Π2 − Lbp∆Π2 =

= (Lap + Lbp + Lcp)∆P − (Lap + Lbp)∆Π2 − Lap∆Π1

By introducing the following notation:

Lp = Lap + Lbp + Lcp σ1 =
Lap
Lp

σ2 =
Lap + Lbp

Lp
(10)

the above equation may be written as

Jv = Lp∆P − Lpσ1∆Π1 − Lpσ2∆Π2 (11a)
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Let us note that, in both cases, σ is the ratio of the filtration coefficient of the
membrane part which is impermeable to the given substance, to the total filtration
coefficient of the membrane. The expression (13a) has the form of a mechanistic
equation (Kargol and Kargol 2000, 2003a,b,c; Kargol 2001, 2002), analogous to the
equation quoted in the Introduction.

The total diffusion flow of the substance s1, in view of the formulas (6b) as
well as (7b), (8b) and (9b), may be written as

JD1 = (L
b
D1 + LcD1)∆Π1 + LcD12∆Π2 (11b)

In like manner, from the formulas (8c) as well as (7c), (8c) and (9c), it follows that
the diffusion flow of the substance s2 across the membrane amounts to

JD2 = LcD2∆Π2 + LcD21∆Π1 = LcD2∆Π2 + LcD21∆Π1 (11c)

These are the formulas for diffusion flows of both solutes with regard to the mem-
brane whose pores vary in linear dimensions (Fig. 1).

Following in KK’s footsteps, let us also assume that, for the sake of experiment,
it is more convenient to have equations in which “net” solute flows js1 and js2 occur.
Hence, after appropriate transformations (Suchanek 2005), we obtain the equations:

js1 = Lp(1− σ1)c̄s1∆P + c̄s1(L
b
D1 + LcD1)∆Π1 + c̄s1(L

c
D12 − Lbp)∆Π2 (12a)

js2 = Lp(1− σ2)c̄s2∆P + c̄s2L
c
D2∆Π2 + c̄s2L

c
D21∆Π1 (12b)

By introducing the following notation:

LD1 = LaD1 + LbD1 + LcD1 = LcD1 + LbD2 (since LaD1 = 0) (13a)

LD2 = LaD2 + LbD2 + LcD2 = LcD2 (since LaD2 = 0 and LbD2 = 0) (13b)

ωd1 = c̄s1L
c
D1 = c̄s1LD1 ωd2 = c̄s2(LbD2 + LcD2) = c̄s2LD2 (13c)

ωd12 = c̄s1(LcD12 − Lbp) ωd21 = c̄s2L
c
D21 (13d)

Eqs. (12a) and (12b) may be thus written:

js1 = Lp(1− σ1)c̄s1∆P + ωd1∆Π1 + c̄s1ωd12∆Π2 (14a)

and
js2 = Lp(1− σ2)c̄s2∆P + ωd2∆Π2 + c̄s2ωd21∆Π1 (14b)

where ωd12 = ωd21.
Eqs. (11a), (14a) and (14b) are mechanistic equations which describe any

homogenous or heteogeneous porous membrane which separates ternary solutions.
With this notation, the coefficients ωd1, ωd2 have the nature of diffusional

coefficients of substances s1 and s2, respectively, whose diffusion flows are generated
by the activity of conjugate forces (∆Π1, ∆Π2), while the cross coefficients ωd12,
ωd21 are the coefficients of interdiffusion.
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The case of heterogeneous membrane separating N + 1-component solutions

While expanding on Eqs. (11a), (14a) and (14b) to include the case of N + 1 sub-
stances in the solution (water + N solutes), we can write the reflection coefficient
for any (i) solute:

σi =
Laip
Lp

(15a)

and the diffusive permeability coefficient:

ωdi = c̄siL
bi
Di (15b)

in which a generally denotes the part of the membrane which is impermeable to
the substance si, and bi denotes the membrane part across which the given si can
permeate freely. For any diffusion coefficient LDi for the i-th solute, the identity
LDi = LbiDi is valid because it is only in the permeable parts of the membrane that
these coefficients are nonzero.

For any i and j (where i �= j), LDij (interdiffusion coefficients) are nonzero only
for those parts of the membrane across which the substances si, sj permeate jointly.
These parts of the membrane shall be denoted by cij. In accordance with these
assumptions, the diffusive convection coefficients ωdij and ωdji shall be written as

ωdij = (L
cij
Dij − L(bi−cij)p ) ωdji = (L

cij
Dji − L(bj−cji)

p ) (15c)

where LcijDij = LcijDji and ωdij = ωdji.
Due to the assumption concerning the random distribution of the pores in

the membrane, the equality LcijDij = LcijDji = LDij is valid, which means that each
interdiffusion coefficient defined for the area cij of the membrane simultaneously
pertains to this membrane as a whole.

The Kargol’s mechanistic equations for the N+1-component solution, written
by means of the above-defined coefficients (Eqs. (15a), (15b) and (15c)), shall have
the following form (equivalent to Eqs. (14a) and (14b), written for three compo-
nents):

Jv = Lp∆P − Lp

N∑
i=1

(σi∆Πi) (16a)

jsi = (1− σi)Lpc̄si∆P + ωdi∆Πi +
N−1∑

j=1,j �=i

(c̄siωdij∆Πj) (16b)

in which i, j = 1, 2,. .N .
As has been demonstrated, the addition of subsequent components to a solu-

tion causes some complication to the equations, the complication being of quan-
titative nature. New thermodynamic forces and flows appear, and the number of
independent practical coefficients increases. The expanded Eqs. (16a) and (16b) do
not describe additional physical phenomena beyond these which have been formu-
lated in Eqs. (11a) as well as (14a) and (14b), which described ternary solutions.



Mechanistic Equations for Multicomponent Solutions 61

Discussion

In the present paper, I have derived equations for transport across a porous mem-
brane, which separates multi-component solutions. A practical (convenient for mea-
surement) form of these equations has been obtained by starting the considerations
from the KK phenomenological equations (Kedem and Katchalsky 1958; Katchal-
sky and Curran 1965). These equations, based on the general thermodynamic for-
malism (for a “black box” membrane), have been applied herein to the description
of the membrane which is subject to certain mechanistic limitations. Consequently,
the above results require some commentary, in particular with reference to trans-
port coefficients which characterise the above-mentioned porous membrane (both
phenomenological and practical ones).

At the beginning of our considerations, it has been assumed that the coeffi-
cients Lp, LpDi = LDpi, LDij = LDji, in the phenomenological Eqs. (4a), (4b) and
(4c) (where i, j = 1, 2) may only be positive or equal to zero because they de-
scribe a mechanistic porous membrane. This assumption pertains in particular to
the phenomenological coefficients which characterise individual Parts (a), (b) and
(c) of the membrane, marked in Fig. 1. These areas are sets of pores with particular
diameters, which can be either permeable or impermeable to particular substances.
Consequently, the cross coefficients LpDi = LDpi, which are connected with mem-
brane pore selectivity, equal zero. The interdiffusion coefficients of the solutes si
and sj (L

cij
Dij = LcijDji = LDij) are non-zero (and positive) in those membrane pores

across which they permeate jointly (i.e. in the parts “cij”).
An unambiguous attribution of the sign + to the coefficients LDij renders it

necessary to determine, equally unambiguously, the orientations of the flows JDi

and thermodynamic forces ∆Πj with respect to each other in Eqs. (4b) and (4c).
There is no reason to introduce into the mechanistic model (Fig. 1) any arbitrary
assumptions related to that issue, hence the latter remains unresolved at this stage
of our considerations. In view of the above, the notation +LD12∆Π2 and +LD21∆Π2
in these equations, which denotes the agreement of flow and thermodynamic force
orientations, has been accepted arbitrarily. Yet there exists a possibility of verify-
ing this notation through measurement and on the basis of the following line of
reasoning.

It is true that the mechanistic practical Eqs. (14a) and (14b) also do not
determine the direction in which any flow jsi moves when driven by the osmotic
pressure difference ∆Πj . This issue may be resolved experimentally, by means of
measurement of the practical coefficients ωdij (always positive). On the other hand,
it is known that the coefficient ωdij may also be expressed with (positive as well)

phenomenological coefficients, as their differences (ωdij = (L
cij
Dij − L

(bi−cij)
p )). The

sign of any such difference is negative when LcijDij < L
(bi−cij)
p . If, in any particular

case, this is what happens, that fact is to be interpreted as a signal that the given
thermodynamic force has been incorrectly attributed the sign (orientation) in the
input phenomenological equations. Nonetheless, it is not to be concluded that the
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coefficient ωdij is negative. For example, in the case of finding that in the formula
(13d) the difference (LcD12−Lbp) is negative, the input phenomenological Eqs. (4b)
and (4c) are to be thus adjusted:

JD1 = −LD1p∆P + LD1∆Π1 − LD12∆Π2
JD2 = −LD2p∆P − LD21∆Π1 + LD2∆Π21

where all phenomenological coefficients are larger than (or equal to) zero.
The question of phenomenological equations notation is then directly resolved

by the experiment as a result of which it is possible to determine the signs of the
terms c̄iωdij∆Πj and c̄jωdji∆Πi in Eqs. (14a), (14b) and (15b).

All practical coefficients in mechanistic equations (as well as the general KK
equations) are defined through measurement. By determining the mechanistic prac-
tical coefficients Lp, σi and ωdi, it is possible (and advisable) to employ the well-
known methods, developed on the basis of the classic KK equations and tested in
numerous cases. For the measurement of the reflection coefficients σi and diffusive
permeability coefficients ωdi for individual solutes, a membrane system filled with
a binary solution (water + selected substance si) may be used. The measurement
of interdiffusion coefficients ωdij is defined by means of the following formulas:

c̄siωdij =

(
jsi
∆Πj

)
∆P=0

or c̄sjωdji =

(
jsj
∆Πi

)
∆P=0

while ωdij = ωdji

(Due to the random distribution of all pores within the membrane, we assume that
these confidents are subject to Onsager’s law both within the parts cij and the
entire membrane).

The measurement of any coefficient ωdij for two substances (si and sj) may
be performed by using an appropriate ternary solution (water + si + sj). It is to
be stressed that the measurement of the coefficients ωdij is difficult because these
are secondary cross coefficients (extremely small).

The “regional” filtration coefficients for the solutions of various substances Laip ,

Lbip and L
(bi−cij)
p = L

(bi−bj)
p (when i < j) may be calculated from the formulas

σi =
Laip
Lp
and Lp = Laip + Lbip , if the previously measured values of the practical

coefficients Lp and σi are known.
There also exists a possibility of estimating the phenomenological coefficients

LbiDi and LcijDij by means of the formulas (13d). Nevertheless, in my opinion, the
most significant is the possibility of “insight” into the practical coefficients, i.e.
a possibility of their more detailed interpretation, characteristic of mechanistic
models.

Finally, it must be stressed once again that the expansion of the description
of the substance transport across the heterogeneous porous membrane to include
N + 1-component solutions does not cover any additional physical phenomena be-
yond these which are formulated by transport equations for ternary solutions (a
solvent + two solutes).
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