Minireview

The Inositol 1,4,5-Trisphosphate Receptor – Transcriptional Regulation and Modulation by Phosphorylation

O. KRIZANOVA AND K. ONDRIAS

Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract. Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are intracellular membrane calcium channels essential for the release of calcium from intracellular stores. They form pathways for Ca^{2+} release that amplifies signals transmitted *via* plasma membrane receptors and so mediate a large array of calcium-regulated signal transduction events, from control of gene expression, through regulation of cell proliferation and other functions, to cell death. Molecular properties, expression and regulation of IP₃Rs have been recently reviewed by others and thus these aspects will be mentioned only briefly in this article. This minireview will focus on the transcriptional regulation of IP₃Rs and their modulation by phosphorylation.

Key words: Inositol 1,4,5-trisphosphate receptor — Transcriptional regulation — Phosphorylation

The inositol 1,4,5-trisphosphate receptors (IP₃Rs) are intracellular membrane calcium channels essential for calcium release from intracellular stores. They mediate the calcium-mobilising effect of a wide range of hormones, cytokines and neurotransmitters. Activation of these receptors results in intracellular calcium signals that display impressive fidelity, frequently manifested through a complex array of temporal and spatial characteristics (Yule 2001). Molecular cloning has identified three isoforms of IP₃Rs, IP₃R type 1, 2 and 3 (IP₃R-1, -2 and -3). All three isoforms are 60–70% homologous and vary in their tissue distribution and hugely in their levels of expression (Berridge 1993; Taylor et al. 1999). The IP₃R consists of homotetramers or heterotetramers of IP₃R isoform subunits with approximately 2,700 amino acids *per* subunit, having approximate molecular mass of 300 kDa. Each subunit contains three functionally distinct regions: the transmembrane ion channel pore domain at the C-terminal end, the IP₃-binding domain at the Nterminal region and the modulatory (transduction) domain between them (Patel et al. 1999; Thrower et al. 2001; Bosanac et al. 2002). The transmembrane domain

Correspondence to: Dr. Olga Krizanova, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava 37, Slovakia E-mail: olga.krizanova@savba.sk

Figure 1. Structure of the IP₃ receptor. IP₃R contains three functionally distinct regions: I, transmembrane ion channel pore domain at the C-terminal end; II, IP₃-binding domain at the N-terminal region; and III, modulatory domain between them. Modulatory domain contains binding sites for calcium, ATP and calmodulin, but also alternatively spliced S2 region.

contains 6 transmembrane segments, with a pore forming region between segments 5 and 6 (Figure 1). Majority of the calcium binding sites occurs in the modulatory domain, where also the putative binding sites for calmodulin and adenosine triphosphate (ATP) are localised.

The three-dimensional structure of the IP₃R-1 was reported at a 2.4 nm resolution (Jiang et al. 2002). The structure of IP₃R-1 was strikingly different from that of the ryanodine receptor calcium release channel. The IP₃R assumes the shape of an uneven dumbbell with one end significantly larger than the other. The larger bulky end with four arms protruding laterally by about 5 nm was suggested to constitute the cytoplasmic side of the protein. The IP₃R is about 17 nm high and the lateral dimension is about 15.5 nm. The smaller end, the lateral dimension of which is about 10 nm, probably forms the membrane-spanning domain with the central pore. Recently, the crystal structure of the IP₃-binding core of IP₃R-1 in complex with IP₃ (residues 226–576) at a 0.22 nm resolution has been presented (Bosanac et al. 2002). The cleft formed between an N-terminal β -trefoil domain (residues 224–436) and a C-terminal α -helical domain containing an 'armadillo repeat'-like fold (residues 437–604) exposes a cluster of arginine and lysine residues that coordinate the three-phosphoryl groups of IP₃. Residues E425, D426, E428, D442 and D444 have been shown to be essential for the coordination of Ca^{2+} (Sienaert et al. 2002). These residues within the IP₃-binding domain are a part of the two putative Ca^{2+} -binding sites. This leads to a tempting speculation on the Ca^{2+} -IP₃ coupling mechanism required for channel activation. Binding of Ca^{2+} to the IP₃R-1 induced marked structural changes in the tetrameric receptor, indicating that Ca^{2+} ions regulate IP₃R gating activity through the rearrangement of functional domains (Hamada et al. 2002).

IP₃R interacts physically with many proteins (for a review see Bultynck et al. 1999). All IP₃R subtypes interact with talin, a focal contact cytoskeletal protein, vinculin and α -actin (Sugiyama et al. 2000). A direct interaction between IP₃Rs and myosin II regulates local organisation of IP₃ signalling in *C. elegans* (Walker et al. 2002). Interaction with the store-operated channel/Ca²⁺-release calcium channel (CRAC), with HIV-1 pathogenicity factor, or with homer proteins in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres were observed (Lewis 2001; Manninen and Saksela 2002; Salanova et al. 2002). Yoo et al. (2000, 2001) showed complex formation between IP₃Rs and chromogranins A and B in the native state in the secretory granules of bovine adrenal medullary chromaffin cells.

The IP₃R-1 is predominantly expressed in the central nervous system, particularly in the cerebellum. The IP₃R-2 is present in many tissues; high levels are found in the spinal cord and glial cells. The IP₃R-3 is found in the kidney, brain, gastrointestinal tract and pancreatic islets (Furuichi et al 1990; Miyakama et al. 1999). IP₃Rs are most abundantly expressed in intracellular membranes of the organelles, e.g. in the endoplasmic reticulum, the nuclear envelope, the Golgi apparatus, and possibly in secretory vesicles (for review see Taylor et al. 1999; Nakanishi et al. 1996). IP₃Rs are also expressed in the plasma membrane of some cells (Putney 1997; Lischka et al. 1999; Tanimura et al. 2000). Recently it was found that IP₃Rs are functionally involved in the store-operated calcium influx, mitochondrial calcium homeostasis, and excitation-contraction coupling in the atrium (Kiselyov et al. 1998; Hajnoczky et al. 2000; Lipp et al. 2000; Gilabert et al. 2001).

Chronic stimulation of receptors linked to the formation of IP₃ led, over a period of several hours, to a massive decrease in the number of IP₃Rs, a decrease in sensitivity of the intracellular Ca²⁺ stores to IP₃, and also a decrease in the frequency of Ca²⁺ puffs (Wojcikiewicz and Nahorski 1991; Wojcikiewicz et al. 1992; Tovey et al. 2001). Such adaptive decreases in IP₃ sensitivity have now been observed in many cell types. The large conformational changes that follow IP₃ binding to its receptors seem to be the essential trigger for IP₃R degradation (Zhu et al. 1999). Poly-ubiquitination, covalent attachment of the short protein, ubiquitin, to lysine residues of a target protein of IP₃R, followed by degradation in proteasomes (the ubiquitin/proteasome pathway) was suggested in the process of degradation (Hershko and Ciechanover 1998; Oberdorf et al. 1999). Phosphorylation of Ser-1588 and 1755 did not inhibit IP₃R poly-ubiquitination (Wojcikiewicz et al. 2003).

 IP_3R subtypes differ markedly in their response to endogenous as well as exogenous modulators. Details of the effect of the endogenous modulators, i.e. IP_3 ,

 Ca^{2+} , ATP, phosphorylation, on IP₃Rs were recently reviewed (Taylor 1998; Patel et al. 1999; Iino 2000; Thrower et al. 2001) and we will focus only on some of them.

It is generally accepted that IP_3R is activated only in the presence of IP_3 . However, the recently discovered family of calmodulin (CaM)-like neuronal Ca²⁺ sensor proteins called Ca²⁺-binding proteins (CaBPs/caldendrin) were reported to activate IP_3R in the absence of IP_3 (Yang et al. 2002). Moreover, chromogranin A, which forms a complex with IP_3R , drastically increased IP_3R channel activity in the secretory granules of bovine adrenal medullary chromaffin cells (Thrower et al. 2002).

Single channel properties of IP₃Rs were obtained mostly in bilayer lipid membranes, where Ca²⁺ was used as an ion carrier. Cytosolic Ca²⁺, binding directly to IP₃R, exerts a bell-shaped dependence on the IP₃R-1. Low concentrations of calcium (200–300 nmol/l) increase channel activity in the presence of IP₃, while high Ca²⁺ concentrations inhibit it (Iino 1990; Bezprozvanny et al. 1991). It was reported that the Ca²⁺ dependence of single IP₃R-2 is not bell-shaped and that IP₃R-3 is not inhibited at high Ca²⁺ concentrations (Hagar et al. 1998). However, the inhibitory effect of calcium on all types of IP₃R is still controversial, since it was not observed in other studies (Swatton et al. 1999; Missiaen et al. 1998; Mak et al. 2000).

In presence of the IP₃, ATP increases activity of IP₃Rs (Bezprozvanny and Ehrlich 1993) by binding to two high affinity sites on the IP₃R-1 or to one binding site on the IP₃R-3 (Maes et al. 2000). At higher concentrations (0.5 mmol/l) it inhibits IP₃R, what can be prevented by raising the IP₃ concentration, indicating possible competitive binding of ATP to the IP₃-binding domain. On the other side, different modulation of single channel properties of IP₃Rs by IP₃, Ca²⁺ and ATP was observed in patch clamp studies of IP₃R channels in the outer membrane of isolated cell nuclei (Mak et al. 2000, 2001; Boehning et al. 2001). This controversy among the results obtained in the lipid bilayer and in patch clamp experiments is not yet resolved.

Despite the fact that different calmodulin-binding sites have been characterised in the IP₃R, their function remains elusive (for review see Nadif Kasri et al. 2002). CaM inhibited IP₃ induced Ca²⁺-release (IICR), regulated IP₃R sensitivity to Ca²⁺, and inhibited IP₃R-1 in planar lipid bilayer (Michikawa et al. 1999). However, in some reports the interaction of CaM with the high-affinity Ca²⁺-CaMbinding site in the modulatory domain of the IP₃R-1 did not play a direct role in biphasic modulation of IP₃R-1 by cytosolic Ca²⁺ or in IP₃R-1 inhibition by CaM (Nosyreva et al. 2002).

A variety of pharmacological compounds modulates IP_3R function (for review see Michelangeli et al. 1995). The most of them function as non-specific modulators. Only a few compounds activate IP_3R directly. Recently, new exogenous compounds adenophostin A and B from fungal products were found to be full IP_3R agonists. They activated IP_3R in the absence of IP_3 and were approximately 100-fold more potent than IP_3 (Takahashi et al. 1994). Several pharmacologically active drugs inhibit IP_3R s non-specifically. The most common is the non-specific competitive inhibitor heparin. The compound KN-93, a Ca^{2+} calmodulin-dependent protein kinase II ($Ca^{2+}/CaMKII$) inhibitor, directly inhibited IP₃R-1, and the compounds 2-aminoethoxydiphenyl borate (2APB) and curcumin inhibited IICR from cerebellar microsomes (Maruyama et al. 1997; Dyer et al. 2002; Smyth et al. 2002). Uchiyama et al. (2002) developed a recombinant hyperaffinity IP₃ absorbent (IP₃ sponge), which has approximately 1000-fold higher affinity for the IP₃ than the parental IP₃R-1. Trapping IP₃ with the IP₃ sponge inhibited IICR in cells or microsomes. The IP₃ sponge is a specific and significant tool for studying IP₃-calcium signalling.

Gene transcription and modulation of IP₃R gene expression

Transcription of the IP₃Rs is directed from their promoters. A promoter of the IP₃R-1 gene was assigned between -528 to +169 relative to the transcription start site (Furutama et al. 1996). The IP₃R-1 gene has a typical RNA polymerase II-type promoter with a unique transcription initiation point and a consensus TATA-box in the promoter. The nucleotide sequence of the 5' region of the human IP₃R-1 gene exposed potential transcription regulatory sites (Figure 2). These potential transcription regulatory sites include the steroid hormone response element (HRE), CAATT enhancer-binding protein element (C/EBP), retinoic acid responsive element (RARE), AP-1 and AP-2 sites, NF- κ B sites and SRE (Kirkwood et al. 1997). Although C/EBP was found in several regions of hippocampus, in cerebellar Purkinje cells and in part of the cortex in the adult brain of mice, it cannot be responsible exclusively for the predominate expression of the IP₃R-1 gene in CNS, because C/EBP binding site is outside of the region (from -528 to +169) capable of inducing normal expression patterns in transgenic mice (Furutama et al. 1996).

In both the human and mouse promoter, putative binding sites for transcription factors sensitive to retinoic acid were found. The activity of the isolated human IP₃R-1 promoter is decreased by approximately 30% after treatment with 0.5 μ mol/l retinoic acid for 48 hours. This decrease in human IP₃R-1 promoter activity is likely to be mediated through the AP-2 binding site (Deelman et al. 1998). Also, endogenous IP₃R-1 mRNA is downregulated in A7r5 cells after treatment with 0.5 μ mol/l retinoic acid for 48 hours, indicating that the endogenous rat IP₃R-1 promoter is also sensitive to retinoic acid (Deelman et al. 1998).

Figure 2. Potential transcription regulatory sites of the human IP₃R-1 gene.

Comparison of the promoter structures of the three genes of IP₃R-1, -2 and -3 revealed that the promoter structures of the ubiquitous IP₃R-2 and -3 genes were obviously distinct from that of the neural IP₃R-1 (Tamura et al. 2001). The IP₃R-1 promoter contains a TATA element and a single transcription start site, while the type 2 and 3 receptor genes, have no consensus TATA element and possess multiple transcription start points (seven for IP₃R-2 and four for IP₃R-3; Morikawa et al. 1997; Tamura et al. 2001). Seven transcription start points for the IP₃R-2 gene are located around 300 bp upstream from the first ATG codon and for the IP₃R-3 gene there are four transcription start points between positions -325 and -285. Additionally, from comparison with IP₃R-1, these two genes are relatively rich in G/C nucleotides in their promoter regions (i.e. IP₃R-1, 62%; IP₃R-2, 73%; IP₃R-3, 83%) (Tamura et al. 2001). Moreover, a number of CpG-islands (clusters of CG or GC) were observed in the control region of IP₃R-2 and -3 genes. These features of a promoter are characteristic of the so-called housekeeping genes that exhibit ubiquitous expression patterns (Tamura et al., 2001).

The gene encoding the type 1 isoform is subject to alternative splicing and gives rise to three splice variants that have been denoted as S1, S2 and S3. The S1 splice site is located in the ligand-binding domain, whereas the S2 and S3 splice sites are in the regulatory domain (Lin et al. 2000). Both the short and the long form of S1 and S3 appear to coexist in the same tissues, while the expression of the S2 variant differs in neurons and peripheral tissues (Kocan et al. 2002). The S1 splice site formed by splicing in the middle of the ligand binding domain may alter the properties of IP_3R binding, while the presence or absence of the S2 splice site may modify regulation of IP_3Rs-1 , probably through the protein kinase A (PKA) phosphorylation sites and changes in kinetics (Danoff et al. 1991). S2 splicing has an effect on ATP sensitivity (Tu et al. 2002). The apparent affinity to potentiation by ATP is reduced approximately six-fold in the non-neuronal (peripheral) IP_3R-1 S2(-) isoform. In contrast, the level of basal activity in the absence of ATP is elevated two-fold for the S2(-) isoform (Tu et al. 2002). The ATPA site is intact in IP₃R-1 S2(-) isoform and the observed changes are likely to be attributable to overall changes in the conformation of the IP_3 coupling domain induced by the S2 splicing event. It is also possible that the additional ATPC site created in IP_3R-1 S2(-) isoform by S2 excision (Ferris and Snyder 1992) is inhibitory, leading to reduction in the apparent affinity of IP_3R-1 for ATP. Boehning et al. (2001) described the single-channel properties of all, the neuronal (S2(+)), non-neuronal (peripheral; S2(-)) and recombinant (S2(+/-) IP₃R-1 in native mammalian membranes. No differences in calcium selectivity and channel gating were observed between S2(+) and S2(-) splice variants (Boehning et al. 2001).

Modulation of the gene expression of IP_3Rs can differ according to the tissue. Therefore, we tested the effect of single immobilisation (which is one of the most potent stressors) for two hours on IP_3R-1 in renal medulla (Zacikova et al. 2000), cardiac atria (Lencesova et al. 2002) and stellate ganglia (Micutkova et al. 2003) of rats. In renal medulla of normotensive rats, immobilisation decreased the gene expression of IP_3Rs significantly within two hours (Zacikova et al. 2000). In stellate ganglia, single exposure to immobilisation stress had no effect on the gene expression of IP₃R-1 (Micutkova et al. 2003). In cardiac atria, gene expression of IP₃Rs-1 and -2 was upregulated by single immobilisation stress for 2 hours and this increase in gene expression was glucocorticoid-dependent (Lencesova et al. 2002). Nevertheless, when animals were exposed to repeated immobilisation for 7 days, two hours daily, a significant decrease in IP₃Rs-1 occurred in all these tissues.

Downregulation of IP_3R gene expression was observed also in heart failure derived from end-stage dilated cardiomyopathy (Barrans et al. 2002). Nevertheless, it still remains to be elucidated whether downregulation of IP_3Rs is a cause, or a consequence of the pathological stage.

Modulation of IP₃R function by phosphorylation

IP₃Rs contain consensus sequences for phosphorylation and they have been reported to be phosphorylated by cAMP-dependent PKA (Wojcikiewicz and Luo 1998), protein kinase C (PKC), cGMP-dependent protein kinase G (PKG), CaMKII and protein tyrosine kinases (PTKs) (for review see Patel et al. 1999; Thrower et al. 2001). For example, human cerebellum IP₃R-1 has the following total number of consensus phosphorylation sites: 3 for PKA, 6 for PKC, 43 for casein kinase II (CKII), 16 for CaMKII, and 3 for tyrosine kinase (TK) (Patel et al. 1999). This indicates that there is a huge number of combinations of phosphorylated/dephosphorylated sites. For example, if there are seven potential phosphorylated sites (each monomer equally phosphorylated/dephosphorylated), there are 128 different possible phosphorylation stages of the channel. Since phosphorylation/dephosphorylation modulates channel function (Jayaraman et al. 1996; DeSouza et al. 2002), the effects of phosphorylation/dephosphorylation might be very complex.

IP₃R can undergo also autophosphorylation. Ferris et al. (1992) demonstrated autophosphorylation of a purified and reconstituted rat cerebellum IP₃R on a serine residue and found serine protein kinase activity of the IP₃R towards a specific peptide substrate. Stoichiometric levels of the autophosphorylation were 0.4 mol of phosphate/mol of IP₃R. This demonstrated that only a fraction of IP₃Rs was capable of autophosphorylation. Recently, it was reported that protein kinases, melanoma and kidney α -kinases were covalently linked with ion channels (Riazanova et al. 2001). This may indicate that more membrane channels can exhibit kinase activity.

Recent evidence supports a view that IP_3Rs function as multiprotein complexes. Several proteins having phosphorylation or dephosphorylation activity were reported to be associated with IP_3Rs . Schlossmann et al. (2000) identified a 125,000 dalton protein IRAG, which was bound to the IP_3R-1 and to cGMP-dependent protein kinase I (cGKI β). Stimulation of T-lymphocytes caused a physical association between the non-receptor PTK in the *Src* family and IP_3R-1 (Jayaraman et al. 1996). B-cell scaffold protein with ankyrin repeats (BANK), a substrate of TK is associated with PTK-Lyn and IP₃R. BANK promotes PTK-Lyn mediated tyrosine phosphorylation of IP₃R (Yokoyama et al. 2002). A physical association of the protein phosphatase calcineurin with the IP₃R *via* an immunophilin protein FKBP12 was reported (Cameron et al. 1995). On the other hand, Bultynck et al. (2001) did not find a specific, high-affinity interaction between IP₃R-1 or -2 with FKBP12. Regulation of IP₃R by calcineurin and FKBP12 remains controversial.

Recently it was shown that PKA and the protein phosphatases PP1 and PP2A are components of the IP₃R-1 macromolecular signalling complex (DeSouza et al. 2002; Tang et al. 2003). This finding points to the similarities between this complex and that of the closely related ryanodine calcium release channels (RyR1 and RyR2; Marx et al. 2001). They showed that the RyR1 and RyR2 macromolecular complexes involve targeting of kinases and phosphatases to the channels *via* targeting proteins that specifically bind to leucine/isoleucine zippers on the RyRs. Since the IP₃Rs are phosphorylated or dephosphorylated by associated and free kinases or phosphatases, the regulation of IP₃R by phosphorylation or dephosphorylation in the intact cells may be different from the regulation of purified receptors in reconstituted systems.

Phosphorylation by PKA

Phosphorylation of IP₃Rs by PKA is relatively well characterised (Danoff et al. 1991; Ferris et al. 1991; Nakade et al. 1994; Wojcikiewicz and Luo 1998; Haug et al. 1999; Giovannucci et al. 2000; Pieper et al. 2001; Tang et al. 2003). However, modulation of IP₃R function by phosphorylation is still not fully understood. There is not full consensus regarding the effects of PKA on the activity of IP₃Rs. Several reports demonstrate that PKA phosphorylation of IP₃Rs either increase or decrease the channel activity.

The isolated neuronal IP₃R-1 from rat cerebellum is phosphorylated by cAMPand cGMP-dependent protein kinases on two distinct sites, Ser-1589 and Ser-1756 (Ferris et al. 1991). PKA phosphorylated both sites with the same time course and same stoichiometry, whereas PKG phosphorylated Ser-1755 with a higher velocity and a higher stoichiometry than Ser-1589 (Haug et al. 1999). IP₃R-2 and -3 lack these consensus PKA phosphorylation sites, although they do contain other putative PKA phosphorylation sites. To monitor IP₃R phosphorylation in vivo, Pieper et al. (2001) developed antibodies that differentiated IP₃R-1 phosphorylated at Ser-1755 from the unphosphorylated form. They demonstrated that IP_3R-1 was phosphorylated by PKA at Ser-1589 and Ser-1755, with Ser-1755 phosphorylation greatly predominating in the brain. Striking variations in the regional and subcellular distribution of IP_3R-1 phosphorylation were found, which were regulated by excitatory neurotransmission, excitotoxic insult and neuronal ischaemia-reperfusion. In non-neuronal tissues alternative splicing results in deletion of a 40 amino acid exon that affects PKA phosphorylation of the channel resulting in a preferential phosphorylation of serine 1589 in some tissues (Danoff et al. 1991).

PKA in the presence of cAMP and of the catalytic subunit of PKA increased the extent of IICR from canine cerebellum membrane fractions by 35% without interfering with the binding of IP_3 to its receptor sites (Volpe and Alderson-Lang 1990). Phosphorylation of an immunoaffinity-purified IP_3R-1 from mouse cerebellar microsomal fraction was studied after reconstitution into phospholipid vesicles. The catalytic subunit of PKA stoichiometrically phosphorylated the IP₃R-1 protein and it increased the rate and extent of ${}^{45}Ca^{2+}$ influx into proteoliposomes by 20% (Nakade et al. 1994). PKA phosphorylation of IP₃R-1 augmented Ca^{2+} release (Pieper et al. 2001) and increased channel activity in planar lipid bilayers (DeSouza et al. 2002; Tang et al. 2003). Phosphorylation of IP_3R in intact hepatocytes cells was associated with an increase of its sensitivity to Ca^{2+} and IP_3 (Joseph and Ryan 1993). IP₃R-1, -2 and -3 were differentially susceptible to PKA phosphorylation and were phosphorylated in intact human neuroblastoma, rat pancreatoma and rat insulinoma cells (Wojcikiewicz and Luo 1998). PKA enhanced IP₃-induced Ca²⁺ mobilisation by $\approx 20\%$ in a range of permeabilised cell types, irrespective of whether the type 1, 2, or 3 receptor was predominant. PKA phosphorylated IP₃R-2 in parotid acinar cells and dramatically potentiated Ca^{2+} release (Bruce et al. 2002). The interpretation of indirect studies of IP_3R activation by PKA phosphorylation may be complicated by the findings that cAMP can raise intracellular calcium independently of PKA (den Dekker et al. 2002).

Phosphorylation of IP₃R-1 from cerebellum caused a decrease in Ca²⁺ release (Supattapone et al. 1988). Phosphorylation of IP₃R-1 by endogenous kinases in intact platelets resulted in high IICR, whereas additional PKA phosphorylation inhibited IICR (Quinton et al. 1996). Elevation of cAMP in intact single megakaryocytes inhibited IP₃-induced rise in intracellular Ca²⁺ and PKA inhibitors blocked the inhibitory effect, indicating that the inhibition was induced by PKA (Tertyshnikova and Fein 1998). PKA-dependent phosphorylation of IP₃R-3 inhibited Ca²⁺ release in pancreatic acinar cells at a low concentration of IP₃, whereas PKA had little effect on the release at high doses of IP₃ (Giovannucci et al. 2000). PKA shaped oscillations in pancreatic acinar cells by phosphorylation of IP₃R-3 (Straub et al. 2002).

The discrepancy between the effects of PKA phosphorylation on IP₃R activity observed by various investigators may be partially explained by misinterpretation of the Ca²⁺ release activity due to the confounding opposing contribution of increased ER Ca²⁺ pump (uptake) activity in response to PKA phosphorylation as well as by different "phosphorylation stages" of the IP₃R complex in different experiments.

Phosphorylation by PKG

PKG phosphorylation of IP₃R-1 decreased IP₃-induced calcium release. Activation of PKG effectively suppressed thrombin-induced stimulation of IP₃ production (Ruth et al. 1993). IICR was inhibited by cGMP in intact rat megakaryocytes *via* PKG and PKA (Tertyshnikova and Fein 1998). In permeabilised and intact rabbit stomach muscle cells, PKG inhibited IICR (Murthy 2001). IRAG and cGKI β are part of the multicomponent complex physically interacting with IP₃R-1 (Schlossmann et al. 2000). They are involved in regulation of IICR. By phosphorylation of IRA, cGKI β decreased the IP₃-dependent release through IP₃R-1. Up to four serie residues in IRAG were phosphorylated cGKI β , but phosphorylation of Ser-696 was necessary to decrease calcium release (Ammendola et al. 2001).

Phosphorylation by PTK

PTK phosphorylation of IP₃R-1 increased IP₃-induced calcium release. IP₃R-1 contains two potential tyrosine phosphorylation sites at residues 482 and 2617 (Michikawa et al. 1994). Thrombin activation of human platelets was accompanied by tyrosine phosphorylation of IP_3R and by a transient enhancement in platelet cytosolic Ca^{2+} , but this enhancement was attenuated by subsequent dephosphorylation. Jayaraman et al. (1996) observed that stimulation of T-lymphocytes caused a physical association between the PTK-Fyn and IP₃R, followed by tyrosine phosphorylation of IP_3R-1 and resulting in an increase in the open probability of the channel. PTK-Lyn mediated tyrosine phosphorylation of IP₃R in B-cells, resulting in its increased activity (Yokoyama et al. 2002). Major cell adhesion molecules, CD44v10 and Rho-kinase (ROK) are physically associated as a complex in aortic endothelial cells. Activation of the cells promoted RhoA-mediated ROK activity, which, in turn, increased phosphorylation of IP_3R-1 and, to a lesser extent, of IP₃R-2 and -3. The phosphorylated IP₃R-1 is enhanced in its binding to IP₃, which subsequently stimulates IP_3 -mediated Ca^{2+} flux (Singleton and Bourguignon 2002).

Phosphorylation by other kinases

CaMKII can phosphorylate IP₃R-1 but the exact site of phosphorylation is still unknown (Ferris et al. 1991). An IICR in permeabilised 3T6 fibroblasts was activated probably by CaMKII and inhibited by Ca²⁺-dependent protein phosphatase 2B (Zhang et al. 1993). Cerebellar membranes containing IP₃R-1 phosphorylated by PKC or CaMKII displayed a greater potency for IP₃ in stimulating Ca²⁺ flux compared with membranes treated with a specific inhibitor of CaMKII (Cameron et al. 1995).

Conclusion

Modulation of both transcription and phosphorylation affects the function of IP₃Rs. As it can be seen from this minireview, both processes are very complex. Despite a huge amount of information there is still plenty of ambiguity in IP₃R research, from regulatory aspects to the function of these systems. To analyse the precise function of the IP₃R-1, IP₃R-1 deficient mice have been generated by gene targeting (Matsumoto et al., 1996). Most of the homozygous IP₃R-1 deficient mice died *in utero* and the rest suffered of ataxia and convulsion and died before the weaning period. Ogura and co-workers (2001) examined the heterozygous IP₃R deficient mice and found that IP₃R-1 plays a substantial role in the motor coordination.

The function of IP_3R-2 and -3 is still not known. Further research is certainly needed to clarify unknown aspects of these channels.

Acknowledgements. Authors' research is funded by grants: 2/3008, 2/3001, APVT-51–013802 and by the Fogarty International Award (2R03TW000949–04A1).

References

- Ammendola A., Geiselhoringer A., Hofmann F., Schlossmann J. (2001): Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptorassociated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J. Biol. Chem. 276, 24153—24159
- Barrans J. D., Allen P. D., Stamatiou D., Dzau V. J., Liew C. C. (2002): Global gene expression profiling the end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Pathol. 160, 20035—20043
- Berridge M. J. (1993): Cell signalling. A tale of two messengers. Nature 365, 388-389
- Bezprozvanny I., Watras J., Ehrlich B. E. (1991): Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751—754
- Bezprozvanny I., Ehrlich B. E. (1993): ATP modulates the function of inositol 1,4,5trisphosphate-gated channels at two sites. Neuron 10, 1175—1184
- Boehning D., Joseph S. K., Mak D. O. D., Foskett J. K. (2001): Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. Biophys. J. 81, 117—124
- Bosanac I., Alattia J. R., Mal T. K., Chan J., Talarico S., Tong F. K., Tong K. I., Yoshikawa F., Furuichi T., Iwai M., Michikawa T., Mikoshiba K., Ikura M. (2002): Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420, 696—700
- Bruce J. I., Shuttleworth T. J., Giovannucci D. R., Yule D. I. (2002): Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca²⁺ signaling. J. Biol. Chem. **277**, 1340—1348
- Bultynck G., Missiaen L., Callewaert G., Parys J. B., De Smedt H. (1999): Do inositol 1,4,5-trisphosphate receptors function as multiprotein complexes? Curr. Top. Biochem. 1, 193—204
- Bultynck G., De Smet P., Rossi D., Callewaert G., Missiaen L., Sorrentino V., De Smedt H., Parys J. B. (2001): Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochem. J. 354, 413—422
- Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., Snyder S. H. (1995): Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca²⁺ flux. Cel. 83, 463—472
- Danoff S. K., Ferris C. D., Donath C., Fischer G. A., Munemitsu S., Ullrich A., Snyder S. H., Ross C. A. (1991): Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 88, 2951—2955
- Deelman L. E., Jonk L. J., Henning R. H. (1998): The isolation and characterization of the promoter of the human type 1 inositol 1,4,5-trisphosphate receptor. Gene 207, 219—225
- den Dekker E., Heemskerk J. W., Gorter G., van der Vuurst H., Donath J., Kroner C., Mikoshiba K., Akkerman J. W. (2002): Cyclic AMP raises intracellular Ca(2+) in

human megakaryocytes independent of protein kinase A. Arterioscler. Thromb./Vasc. Biol. **22**, 179—186

- DeSouza N., Reiken S., Ondrias K., Yang Y. M., Matkovich S., Marks A. R. (2002): Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J. Biol. Chem. 277, 39397—39400
- Dyer J. L., Khan S. Z., Bilmen J. G., Hawtin S. R., Wheatley M., Javed M. U., Michelangeli F. (2002): Curcumin: a new cell-permeant inhibitor of the inositol 1,4,5-trisphosphate receptor. Cell Calcium **31**, 45—52
- Ferris C. D., Snyder S. H. (1992): Inositol 1,4,5-trisphosphate-activated calcium channels. Annu. Rev. Physiol. 54, 469—488
- Ferris C. D., Cameron A. M., Bredt D. S., Huganir R. L., Snyder S. H. (1991): Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. Biochem. Biophys. Res. Commun. 175, 192—198
- Ferris C. D., Cameron A. M., Bredt D. S., Huganir R. L., Snyder S. H. (1992): Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 267, 7036—7041
- Furuichi T., Shiota C., Mikoshiba K. (1990): Distribution of inositol 1,4,5-trisphosphate receptor mRNA in mouse tissues. FEBS Lett. 267, 85—88
- Furutama D., Shimoda K., Yoshikawa S., Miyawaki A., Furuichi T., Mikoshiba K. (1996): Functional expression of the type 1 inositol 1,4,5-trisphosphate receptor promoterlacZ fusion genes in transgenic mice. J. Neurochem. 66, 1793—1801
- Gilabert J. A., Bakowski D., Parekh A. B. (2001): Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 20, 2672—2679
- Giovannucci D. R., Groblewski G. E., Sneyd J., Yule D. I. (2000): Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca²⁺ release and shapes oscillatory Ca²⁺ signals. J. Biol. Chem. **275**, 33704–33711
- Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. (1998): Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. **396**, 81–84
- Hajnoczky G., Csordas G., Madesh M., Pacher P. (2000): The machinery of local Ca²⁺ signalling between sarco-endoplasmic reticulum and mitochondria. J. Physiol. **529**, 69–81
- Hamada K., Miyata T., Mayanagi K., Hirota J., Mikoshiba K. (2002): Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J. Biol. Chem. 277, 21115—21118
- Haug L. S., Jensen V., Hvalby O., Walaas S. I., Ostvold A. C. (1999): Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J. Biol. Chem. 274, 7467—7473
- Hershko A., Ciechanover A. (1998): The ubiquitin system. Annu. Rev. Biochem. ${\bf 67}, 425-479$
- Iino M. (1990): Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 95, 1103—1122
- Iino M. (2000): Molecular basis of spatio-temporal dynamics in inositol 1,4,5-trisphosphate-mediated Ca²⁺ signalling. Jpn. J. Pharmacol. 82, 15—20
- Jayaraman T., Ondrias K., Ondriasova E., Marks A. R. (1996): Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science (Washington D. C.) 272, 1492—1494

- Jiang Q. X., Thrower E. C., Chester D. W., Ehrlich B. E., Sigworth F. J. (2002): Threedimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J. 21, 3575—3681
- Joseph S. K., Ryan S. V. (1993): Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J. Biol. Chem. 268, 23059—23065
- Kim J. H., Rah J. C., Fraser S. P., Chang K. A., Djamgoz M. B., Suh Y. H. (2002): Carboxyl-terminal peptide of beta-amyloid precursor protein blocks inositol 1,4,5trisphosphate-sensitive Ca²⁺ release in Xenopus laevis oocytes. J. Biol. Chem. 277, 20256—20263
- Kirkwood K. L., Homick K., Dragon M. B., Bradford P. G. (1997): Cloning and characterization of the type I inositol 1,4,5-trisphosphate receptor gene promoter. Regulation by 17beta-estradiol in osteoblasts. J. Biol. Chem. 272, 22425—22431
- Kiselyov K., Xu X., Mozhayeva G., Kuo T., Pessah I., Mignery G., Zhu X., Birnbaumer L., Muallem S. (1998): Functional interaction between InsP3 receptors and storeoperated Htrp3 channels. Nature 396, 478—482
- Kocan J., Lencesova L., Kiss A., Ondrias K., Kvetnansky R., Krizanova O. (2002): Distribution of neuronal and non-neuronal spliced variants of type 1 IP₃-receptor in rat hypothalamus and brain stem. Neurochem. Int. 41, 65—70
- Lencesova L., Ondrias K., Micutkova L., Filipenko M., Kvetnansky R., Krizanova O. (2002): Immobilization stress elevates IP₃ receptor mRNA in adult rat hearts in a glucocorticoid-dependent manner. FEBS Lett. **531**, 432–436
- Lewis R. S. (2001): Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497—521
- Lin C., Widjaja J., Joseph S. K. (2000): The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J. Biol. Chem. 275, 2305—2311
- Lipp P., Laine M., Tovey S. C., Burrell K. M., Berridge M. J., Li W., Bootman M. (2000): Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr. Biol. 10, 939—942
- Lischka F. W., Zviman M. M., Teeter J. H., Restrepo D. (1999): Characterization of inositol-1,4,5-trisphosphate-gated channels in the plasma membrane of rat olfactory neurons. Biophys. J. 76, 1410—1422
- Maes K., Missiaen L., De Smet P., Vanlingen S., Callewaert G., Parys J. B., De Smedt H. (2000): Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 27, 257—267
- Mak D. O., McBride S., Raghuram V., Yue Y., Joseph S. K., Foskett J. K. (2000): Singlechannel properties in endoplasmic reticulum membrane of recombinant type 3 inositol trisphosphate receptor. J. Gen. Physiol. 115, 241-256
- Mak D. O., McBride S., Foskett J. K. (2001): Regulation by Ca²⁺ and inositol 1,4,5trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca²⁺ activation uniquely distinguishes types 1 and 3 insp3 receptors. J. Gen. Physiol. 117, 435—446
- Manninen A., Saksela K. (2002): HIV-1 Nef interacts with inositol trisphosphate receptor to activate calcium signaling in T cells. J. Exp. Med. 195, 1023—1032
- Maruyama T., Kanaji T., Nakade S., Kanno T., Mikoshiba K. (1997): 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca²⁺ release. J. Biochem. (Tokyo) **122**, 498—505
- Marx S. O., Reiken S., Hisamatsu Y., Gaburjakova M., Gaburjakova J., Yang Y. M., Rosemblit N., Marks A. R. (2001): Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J. Cell Biol. 153, 699-708

- Matsumoto M., Nakagawa T., Inoue T., Nagata E., Tanaka K., Takano H., Minowa O., Kuno J., Sakakibara S., Yamada M., Yoneshima H., Miyawaki A., Fukuuchi Y., Furuichi T., Okano H., Mikoshiba K., Noda T. (1996): Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature **379**, 168–171
- Micutkova L., Kvetnansky R., Krizanova O. (2003): Repeated immobilization stress reduces the gene expression of the type 1 and 2 IP3 receptors in stellate ganglia. Neurochem. Int. 43, 557—561
- Michelangeli F., Mezna M., Tovey S., Sayers L. G. (1995): Pharmacological modulators of the inositol 1,4,5-trisphosphate receptor. Neuropharmacology **34**, 1111–1122
- Michikawa T., Hamanaka H., Otsu H., Yamamoto A., Miyawaki A., Furuichi T., Tashiro Y., Mikoshiba K. (1994): Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 269, 9184—9189
- Michikawa T., Hirota J., Kawano S., Hiraoka M., Yamada M., Furuichi T., Mikoshiba K. (1999): Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23, 799-808
- Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. (1998): Functional properties of the type-3 InsP3 receptor in 16HBE14o-bronchial mucosal cells. J. Biol. Chem. 273, 8983—8986
- Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. (1999): Encoding of Ca²⁺ signals by differential expression of IP3 receptor subtypes. EMBO J. **18**, 1303–1308
- Morikawa K., Ohbayashi T., Nakagawa M., Konishi Y., Makino Y., Yamada M., Miyawaki A., Furuichi T., Mikoshiba K., Tamura T. (1997): Transcription initiation sites and promoter structure of the mouse type 2 inositol 1,4,5-trisphosphate receptor gene. Gene **196**, 181–185
- Murthy K. S. (2001): cAMP inhibits IP₃-dependent Ca²⁺ release by preferential activation of cGMP-primed PKG. Am. J. Physiol. Gastrointest. L. **281**, G1238–G1245
- Nadif Kasri N., Bultynck G., Sienaert I., Callewaert G., Erneux C., Missiaen L., Parys J. B., De Smedt H. (2002): The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim. Biophys. Acta 1600, 19—31
- Nakade S., Rhee S. K., Hamanaka H., Mikoshiba K. (1994): Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca²⁺ flux in reconstituted lipid vesicles. J. Biol. Chem. **269**, 6735—6742
- Nakanishi S., Fujii A., Nakade S., Mikoshiba K. (1996): Immunohistochemical localization of inositol 1,4,5-trisphosphate receptors in non-neural tissues, with special reference to epithelia, the reproductive system, and muscular tissues. Cell Tissue Res. 285, 235-251
- Nosyreva E., Miyakawa T., Wang Z., Glouchankova L., Mizushima A., Iino M., Bezprozvanny I. (2002): The high-affinity calcium[bond]calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochem. J. 365, 659—667
- Oberdorf J., Webster J. M., Zhu C. C., Luo S. G., Wojcikiewicz R. J. (1999): Downregulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. Biochem. J. 339, 453—461
- Ogura H., Matsumoto M., Mikoshiba K. (2001): Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav. Brain Res. **122**, 215–219
- Patel S., Joseph S. K., Thomas A. P. (1999): Molecular properties of inositol 1,4,5trisphosphate receptors. Cel. Calcium. 25, 247—264

- Pieper A. A., Brat D. J., O'Hearn E., Krug D. K., Kaplin A. I., Takahashi K., Greenberg J. H., Ginty D., Molliver M. E., Snyder S. H. (2001): Differential neuronal localizations and dynamics of phosphorylated and unphosphorylated type 1 inositol 1,4,5-trisphosphate receptors. Neuroscience (Oxford) 102, 433-444
- Putney J. W. Jr. (1997): Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium 21, 257—261
- Quinton T. M., Brown K. D., Dean W. L. (1996): Inositol 1,4,5-trisphosphate-mediated Ca2+ release from platelet internal membranes is regulated by differential phosphorylation. Biochemistry 35, 6865—6871
- Riazanova L. V., Pavur K. S., Petrov A. N., Dorovkov M. V., Riazanov A. G. (2001): Novel type of signaling molecules: protein kinases covalently linked to ion channels. Mol. Biol. (Mosk). 35, 321—332
- Ruth P., Wang G. X., Boekhoff I., May B., Pfeifer A., Penner R., Korth M., Breer H., Hofmann F. (1993): Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositol 1,4,5-trisphosphate production. Proc. Natl. Acad. Sci. U.S.A. 90, 2623—2627
- Salanova M., Priori G., Barone V., Intravaia E., Flucher B., Ciruela F., McIlhinney R. A., Parys J. B., Mikoshiba K., Sorrentino V. (2002): Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium **32**, 193—200
- Sienaert I., Nadif Kasri N., Vanlingen S., Parys J. B., Callewaert G., Missiaen L., de Smedt H. (2002): Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. 365, 269—277
- Singleton P. A., Bourguignon L. Y. (2002): CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca²⁺ signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil. Cytoskeleton 53, 293—316
- Schlossmann J., Ammendola A., Ashman K., Zong X., Huber A., Neubauer G., Wang G. X., Allescher H. D., Korth M., Wilm M., Hofmann F., Ruth P. (2000): Regulation of intracellular calcium by a signalling complex of IRAG, IP₃ receptor and cGMP kinase Ibeta. Nature 404, 197—201
- Smyth J. T., Abbott A. L., Lee B., Sienaert I., Kasri N. N., De Smedt H., Ducibella T., Missiaen L., Parys J. B., Fissore R. A. (2002): Inhibition of the inositol trisphosphate receptor of mouse eggs and A7r5 cells by KN-93 via a mechanism unrelated to Ca²⁺/calmodulin-dependent protein kinase II antagonism. J. Biol. Chem. **277**, 35061—35070
- Straub S. V., Giovannucci D. R., Bruce J. I., Yule D. I. (2002): A role for phosphorylation of inositol 1,4,5-trisphosphate receptors in defining calcium signals induced by Peptide agonists in pancreatic acinar cells. J. Biol. Chem. 277, 31949—31956
- Sugiyama T., Matsuda Y., Mikoshiba K. (2000): Inositol 1,4,5-trisphosphate receptor associated with focal contact cytoskeletal proteins. FEBS Lett. **466**, 29—34
- Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. (1998): Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. U.S.A. 85, 8747—8750
- Swatton J. E., Morris S. A., Cardy T. J., Taylor C. W. (1999): Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca²⁺ and mediate quantal Ca²⁺ mobilization. Biochem. J. **344**, 55–60
- Takahashi M., Tanzawa K., Takahashi S. (1994): Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 269, 369—372

- Tamura T., Hashimoto M., Aruga J., Konishi Y., Nakagawa M., Ohbayashi T., Shimada M., Mikoshiba K. (2001): Promoter structure and gene expression of the mouse inositol 1,4,5-trisphosphate receptor type 3 gene. Gene 275, 169—176
- Tang T. S., Tu H., Wang Z., Bezprozvanny I. (2003): Modulation of type 1 inositol (1,4,5)trisphosphate receptor function by protein kinase A and protein phosphatase 1α . J. Neurosci. **23**, 403–415
- Tanimura A., Tojyo Y., Turner R. J. (2000): Evidence that type I, II, and III inositol 1,4,5-trisphosphate receptors can occur as integral plasma membrane proteins. J. Biol. Chem. 275, 27488—27493
- Taylor C. W. (1998): Inositol trisphosphate receptors: Ca²⁺-modulated intracellular Ca²⁺ channels. Biochim. Biophys. Acta. **1436**, 19—33
- Taylor C. W., Genazzani A. A., Morris S. A. (1999): Expression of inositol trisphosphate receptors. Cel. Calcium 26, 237—251
- Tertyshnikova S., Fein A. (1998): Inhibition of inositol 1,4,5-trisphosphate-induced Ca²⁺ release by cAMP-dependent protein kinase in a living cell. Proc. Natl. Acad. Sci. U.S.A. 95, 1613—1617
- Thrower E. C., Hagar R. E., Ehrlich B. E. (2001): Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol. Sci. **22**, 580–586
- Thrower E. C., Park H. Y., So S. H., Yoo S. H., Ehrlich B. E. (2002): Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J. Biol. Chem. 277, 15801—15806
- Tovey S. C., de Smet P., Lipp P., Thomas D., Young K. W., Missiaen L., De Smedt H., Parys J. B., Berridge M. J., Thuring J., Holmes A., Bootman M. D. (2001): Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J. Cell Sci. 114, 3979—3989
- Tu H., Miyakawa T., Wang Z., Glouchankova L., Iino M., Bezprozvanny I. (2002): Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(+/-) splice variants and the Opisthotonos mutant form. Biophys. J. 82, 1995—2004
- Uchiyama T., Yoshikawa F., Hishida A., Furuichi T., Mikoshiba K. (2002): A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP₃) absorbent traps IP₃, resulting in specific inhibition of IP₃-mediated calcium signaling. J. Biol. Chem. 277, 8106—8113
- Volpe P., Alderson-Lang B. H. (1990): Regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release. II. Effect of cAMP-dependent protein kinase. Am. J. Physiol. 258, C1086—1091
- Walker D. S., Ly S., Lockwood K. C., Baylis H. A. (2002): A direct interaction between IP₃ receptors and myosin II regulates IP₃ signaling in C. elegans. Curr. Biol. **12**, 951–956
- Wojcikiewicz R. J., Nahorski S. R. (1991): Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca²⁺ mobilization and inositol 1,4,5trisphosphate binding. J. Biol. Chem. **266**, 22234—22241
- Wojcikiewicz R. J., Luo S. G. (1998): Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. J. Biol. Chem. 273, 5670—5677
- Wojcikiewicz R. J., Nakade S., Mikoshiba K., Nahorski S. R. (1992): Inositol 1,4,5trisphosphate receptor immunoreactivity in SH-SY5Y human neuroblastoma cells is reduced by chronic muscarinic receptor activation. J. Neurochem. 59, 383–386

- Wojcikiewicz R. J., Xu Q., Webster J. M., Alzayady K., Gao C. (2003): Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5-trisphosphate receptors in alpha T3-1 anterior pituitary cells. J. Biol. Chem. 278, 940—947
- Yang J., McBride S., Mak D. O., Vardi N., Palczewski K., Haeseleer F., Foskett J. K. (2002): Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca²⁺ release channels. Proc. Natl. Acad. Sci. U.S.A. **99**, 7711—7716
- Yokoyama K., Su Ih I. H., Tezuka T., Yasuda T., Mikoshiba K., Tarakhovsky A., Yamamoto T. (2002): BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP₃ receptor. EMBO J. **21**, 83—92
- Yoo S. H., Kang M. K., Kwon H. S., Lee J. S., So S. H., Ahn T., Jeon C. J. (2000): Inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. Colocalization and functional coupling. Adv. Exp. Med. Biol. 482, 83—94
- Yoo S. H., Oh Y. S., Kang M. K., Huh Y. H., So S. H., Park H. S., Park H. Y. (2001): Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca²⁺ channel in the secretory granules and coupling with the Ca²⁺ storage proteins chromogranins A and B. J. Biol. Chem. **276**, 45806—45812
- Yule D. I. (2001): Subtype-specific regulation of inositol 1,4,5-trisphosphate receptors: controlling calcium signals in time and space. J. Gen. Physiol. **117**, 431–434
- Zacikova L., Ondrias K., Kvetnansky R., Krizanova O. (2000): Identification of type 1 IP₃ receptors in the rat kidney and their modulation by immobilization stress. Biochim Biophys. Acta **1466**, 16—22
- Zhang B. X., Zhao H., Muallem S. (1993): Ca²⁺-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca²⁺ release. Modification by agonist stimulation. J. Biol. Chem. **268**, 10997—11001
- Zhu C. C., Furuichi T., Mikoshiba K., Wojcikiewicz R. J. (1999): Inositol 1,4,5-trisphosphate receptor down-regulation is activated directly by inositol 1,4,5-trisphosphate binding. Studies with binding-defective mutant receptors. J. Biol. Chem. 274, 3476—3484

Final version accepted: April 9, 2003