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Mechanistic Formalism for Membrane Transport Generated
by Osmotic and Mechanical Pressure
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Abstract. Since the physical interpretation of practical Kedem–Katchalsky (KK)
equations is not clear, we consider an alternative, mechanistic approach to mem-
brane transport generated by osmotic and hydraulic pressure. We study a porous
membrane with randomly distributed pore sizes (radii). We postulate that reflec-
tion coefficient (σp) of a single pore may equal 1 or 0. From this postulate we
derive new (mechanistic) transport equations. Their advantage is in clear physical
interpretation and since we show they are equivalent to the KK equations, the
interpretation of the latter became clearer as well. Henceforth the equations al-
low clearer and more detailed interpretation of results concerning membrane mass
transport.

This is especially important from the point of view of biophysical studies on
permeation processes across biological membranes, cell membranes including.
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Introduction

Thermodynamic formalism of nonelectrolyte transport across membranes elabo-
rated by Kedem and Katchalsky (1958, 1961, 1963); Katchalsky and Curran (1965)
is a convenient and widely used as a scientific tool. Its main tools are the so-called
practical equations describing membrane transport processes generated simultane-
ously by osmotic pressure ∆Π and mechanical pressure ∆P . The equations were
derived from principles of linear thermodynamics of irreversible processes. Their
standard form is:

Jv = Lp∆P − Lpσ∆Π (1)

js = ω∆Π + (1− σ)c̄Jv (2)
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where: Jv, js – fluxes; Lp, σ, ω – coefficients (of filtration, reflection, and perme-
ation, respectively); c̄ – a suitably defined mean concentration. The equations hold
for membrane systems with sufficiently diluted, well-mixed solutions. In biophysics
the equations were used mainly in studies of passive transport processes across bi-
ological membranes (Katchalsky and Curran 1965; Sha’afi et al. 1970; Tyree 1970;
Ginsburg 1971; Fiscus 1975, 1977, 1986; Sha’afi and Gary-Bobo 1976; Steudle et
al. 1987; Steudle and Brinckmann 1989; Tyree et al. 1994; Kargol and Kargol 2000
and others).

The phenomenological parameters appearing in these equations are defined as
follows (Kedem and Katchalsky 1958, 1961, 1963; Katchalsky and Curran 1965):

Lp =

(
Jv

∆P

)
∆Π=0

(3)

σ =

(
∆P
∆Π

)
Jv=0

(4)

ω =

(
js

∆Π

)
Jv=0

(5)

These formulae express the physical meaning of the parameters and to some
extent they determine experimental techniques for measurement of parameters (Ke-
dem and Katchalsky 1961; Katchalsky and Curran 1965; Grygorczyk 1978). Since
its inception the Kedem-Katchalsky (KK) formalism has been in various ways
modified, expanded and complemented (Kedem and Katchalsky 1961; Patlak et al.
1963; Siegler and Kedem 1966; Zelman 1972; Levitt 1974; Monticelli and Celentano
1983; Kargol and Ślęzak 1985; Del Castillo and Mason 1986; Imai 1989; Kargol and
Kargol 1989; Ślęzak and Turczyński 1992; Kargol 1994, 1996; Kargol et al. 1997;
Kleinhans 1998; Kargol 1999; Katkov 2000 and others) with the goal of expanding
its scope as well as interpretation of processes already included. Several attempts
are also known (Kedem and Katchalsky 1961; Katchalsky and Curran 1965; Zel-
man 1972; Levitt 1974; Sha’afi and Gary-Bobo 1976; Kargol et al. 1997; Kleinhans
1998; Katkov 2000) aimed at reducing the number of phenomenological parameters
from three to two.

In general one could say that the interpretation of KK equations is not entirely
clear. In particular this issue concerns the solute flux equation. E.g. it is believed
that the term (1− σ)c̄Jv in this equation represents the convective flux carried by
Jv. As we show this term should be understood differently. Moreover, one could
also question the interpretation of coefficient ω. These issues are discussed in more
detail in the appendix.

Considering known issues with the interpretation of these thermodynamic
transport equations in this paper we present an alternative mechanistic analysis of
processes of membrane substances transport generated by osmotic and hydraulic
pressures.

We consider a generic porous membrane having a numberN of pores permeable
to the solvent. Typically the pores vary in their size and spatial distribution. We
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assume that their permeability to the solute is determined by the relative pore
and solute molecules’ sizes and assign each pore a coefficient σp equal either 1
(impermeable pores) or 0 (permeable pores) (Kargol and Kargol 2000; Kargol 2001;
Kargol et al. 2001). Hence a number na of smallest pores form an ideal barrier
to this solute, while the remaining pores (nb = N − na) are permeable. Based
on this postulate we derive transport equations (for fluxes Jv and js) with three
phenomenological parameters, i.e. Lp, σ and ωd, where the latter is a coefficient
of diffusive solute permeation. We call them the mechanistic equations after the
derivation method.

The interpretation of transport equations obtained in this work is entirely
clear, contrary to the KK equations. We show, however, that the mechanistic equa-
tions are equivalent to the KK equations. Henceforth the latter gained in clarity
of their interpretation. We also found correlation relations for membrane transport
parameters. Consequently, both the KK and mechanistic equations were rewritten
in reduced form involving not two but three transport parameters.

In this work we also show a comparative analysis of functioning of the KK and
mechanistic equations. The authors believe that this work opens new possibilities
for application of both KK and mechanistic equations in studies of nonelectrolyte
transport in artificial and biological membranes. The two sets of equations together
become a more sophisticated and better understood scientific tool.

Owing to the mechanistic transport equations obtained in this work, new and
radically more favourable research possibilities have now developed, concerned with
passive transport processes in biological membranes, cell membranes including.
Moreover, results of former studies obtained on the basis of the KK equations,
which were not amenable to clear interpretation before, can now be interpreted. The
number of such research results is relatively large, as seen for instance in the papers
(Katchalsky and Curran 1965; Sha’afi et al. 1970; Tyree 1970; Ginsburg 1971; Levitt
1974; Fiscus 1975, 1977, 1986; Sha’afi and Gary-Bobo 1976; Steudle et al. 1987;
Steudle and Brinckmann 1989; Tyree et al. 1994). Their hitherto interpretation
is most often fragmentary and ambiguous (at times wrong). It follows especially
from the fact that the KK equations apply for homogenous membranes, a criterion,
which is not met by cell membranes. Those membranes have their water and solute
transporting channels differentiated geometrically. Hence follows a special utility
of the mechanistic equations, which are concerned just with substance transport
across membranes of differentiated pore sizes.

Mechanistic analysis of membrane substances transport processes gen-
erated by osmotic and hydraulic pressures

Model membrane system with a generic porous membrane

We consider the problem of membrane transport generated by mechanical and
osmotic pressure differently from the method developed by KK. Our approach,
initiated in our papers (Kargol and Kargol 2000; Kargol 2001; Kargol et al. 2001)
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Figure 1. The model membrane system with well-mixed solutions (M – membrane; A,B
– compartments; Kp – capillary; m – stirrer; c1, c2 – concentrations; P1, P2 – mechanical
pressures). Fluxes are described in text.

is of mechanistic nature. The starting point for the analysis is a membrane system
shown schematically in Fig. 1. Two compartments A and B filled with solutions c1
and c2 (respectively) of the same solute are separated by a generic selective porous
membrane M . The solutions are well mixed by mechanical devices (stirrer m) and
c1 < c2. The former compartment is subject to mechanical pressure P1, and the
latter – P2, where P1 < P2. In such case there is an osmotic pressure:

∆Π = RT∆c = RT (c2 − c1)

as well as mechanical pressure ∆P = P2 − P1 across the membrane.
We assume the membrane has a number N of pores permeable to the solvent.

Typically the pores are modeled as being approximately cylindrical and normal to
the membrane surface. For a typical porous membrane, like cellophane, nephro-
phane, or collodion membranes, the pores vary randomly in their dimensions, i.e.
the cross-section radii. Their spatial distribution in the membrane is random as
well. For biological membranes the pores (if we treat certain types of channels,
e.g. water channels, as such) are typically more uniform in size. The pores can be
however ordered in a series according to their radii, from the smallest (rmin

1 ) to the
largest (rmax

N ):
rmin
1 < r2 · · · < ri < · · · < rmax

N

For such a membrane one can select a solute (with a molecular radius rs) for
which a number na of the smallest pores (with radii r such that rmin

1 ≤ r < rs) form
an ideal barrier. The remaining pores, a total of nb = N −na, are permeable. This
fact can be described by assigning a parameter σp to each pore. The parameter can
be only assume integer values either 1 (for impermeable pores) or 0 (for permeable
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ones) and as we show later this postulate is closely related to the membrane re-
flection coefficient. As a justification of the postulate, let us assume that there is a
relatively small number ∆N of unstable pores (with radii close to rs), i.e. pores that
change their solute permeability properties. This could be caused e.g. by a transient
blockage of a pore to solute by a passing molecule or a transient decrease in pore
radius due to a conformational change of molecule complex forming the pore (e.g.
proteins forming a channel). However, it seems reasonable to assume that at any
given moment the number of pores regaining their permeability to solute equals
the number of pores becoming impermeable. Henceforth, there is a clear and stable
division of pores into permeable (σp = 0) and impermeable (σp = 1).

It follows that if a membrane as a whole (a complex of N pores) has all pores
impermeable to the solute, its reflection coefficient σ = 1 and the membrane is
called semipermeable. On the other hand, if all pores are permeable to solvent as
well as solute, then σ = 0 and the membrane is permeable (non selective). If only
a fraction na (of the total of N pores) is impermeable, while the remaining pores
(nb) allow solute flow, the membrane reflection coefficient has a fractional value
0 < σ < 1. Such a membrane is called selective and is a subject of our study. We
might add that osmosis is understood as the solvent (water) transport across a
semipermeable membrane driven by the osmotic pressure. This definition implies
that in selective membranes osmosis takes place through pores na only, for which
the total reflection coefficient is 1.

Equation for the volume flux

We begin our analysis of transport processes taking place in a system shown in
Fig. 1, with an observation that as a result of pressures ∆Π and ∆P on the mem-
brane M , there is a solvent volume flux (Jva = Jvwa) in membrane pores na (for
which σp = 1). In pores nb (with σp = 0) there is a solution volume flux. The
fluxes are given by the following equations:

Jva = Lpa∆P − Lpa∆Π (6)

Jvb = Lpb∆P (7)

where Lpa (resp. Lpb) is the filtration coefficient of pores na (resp. nb) defined as:

Lpa =

(
Jva

∆P

)
∆Π=0

resp.

Lpb =

(
Jvb

∆P

)
∆Π=0

The fluxes flow in opposite directions as those indicated by arrows in Fig. 1. The
net of the two, denoted Jv:

Jv = Jva + Jvb (8)

is called a volume flux.
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One can easily notice in the above three equations that there is a value of
pressure ∆P = ∆Pm for which Jv = 0. Henceforth from equations (5) and (6) we
get:

∆Pm =
Lpa

Lp
∆Π (9)

where
Lp = Lpa + Lpb (10)

is the total membrane filtration coefficient. Introducing the following notation:

σk =
Lpa

Lpa + Lpb
=
Lpa

Lp
(11)

we obtain from equation (8):
∆Pm = σk∆Π

This relation holds if Jv = 0. Thus:

σk =

(
∆Pm

∆Π

)
Jv=0

(12)

The above formula is identical with a definition of reflection coefficient σ given in
the KK formalism (i.e. equation (4)), what implicates, that σk ≡ σ. Its physical
interpretation is however different. In our framework the parameter σ is a ratio
of the filtration coefficient Lpa (of pores Na) to the total membrane filtration co-
efficient Lp, as shown by equation (11). Therefore if Lpa = 0, then according to
equation (11) we get σ = 0. Such a membrane is permeable (non selective). On the
other hand if Lpb = 0, then for Lpa > 0 we obtain σ = 1 meaning the membrane is
semipermeable. For 0 < Lpa < Lp the reflection coefficient has a value 0 < σ < 1
and the membrane is selective.

Parameters Lpa and Lpb are easy to determine provided Lp and σ are known.
Namely, equation (11) yields:

Lpa = σLp (13)

and recalling that Lp = Lpa + Lpb, we get also:

Lpb = (1− σ)Lp (14)

When ∆P 6= ∆Pm a volume flux is induced in the system and using equations (6)
and (7) we obtain from equation (8):

Jv = Jva + Jvb = (Lpa + Lpb)∆P − Lpa∆Π

Substituting (10) and (11) we finally get:

Jv = Lp∆P − Lpσ∆Π (15)
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The equation has the same form as the KK equation for a volume flux. However,
interpretation of the coefficient σ is somewhat different. In our framework it is given
by equation (10), while in the KK formalism it is described by the Stavermann
relation (Katchalsky and Curran 1965):

σ = −
LpD

Lp

where LpD is the so-called osmotic flux coefficient. We note that both in our ap-
proach and in the KK formalism the coefficient Lp is defined by the same formula:

Lp =

(
Jv

∆P

)
∆Π=0

(16)

Equation for the solute flux

In this section we consider the solute flux across a membrane. The KK equation
for the solute flow js has a form:

js = ω∆Π + (1− σ)c̄Jv

It can also be written as:
js = jsk + jkk (17)

where
jsk = ω∆Π (18)

and the term:
jkk = (1− σ)c̄Jv (19)

is treated as a convective flux, i.e. the solute flux carried in membrane pores by
Jv. Let us now analyze the fluxes in the mechanistic framework. Again, our con-
siderations are based on a system shown in Fig. 1. All fluxes induced either by
mechanical pressure ∆P or osmotic pressure ∆Π are shown as arrows in Fig. 1.
They are denoted by Jva, Jvb, js, jd, jk and Jvwb, where Jva = Jvwa is the solvent
flux permeating pores na (impermeable to the solute), Jvb denotes the volume flux
flowing in pores n0b permeable to the solute as well, js is the solute flux, jd – the
diffusive solute flux, and jk – the convective solute flux. We use a sign convention
where fluxes directed to the right (Jvb, js, jd, and jk) are positive, and the others
(Jv and Jva) – negative. One might add that Jv is negative if |Jva| > |Jvb|. We
also recall that if ∆P 6= ∆Pm then there is a nonzero volume flux (Jv 6= 0) in the
system.

We begin our analysis of fluxes jd and jk with a more detailed discussion of
equations (6) and (7). The former refers to pores na (permeable to the solvent only).
It follows that if both osmotic ∆Π and mechanical ∆P pressures are applied to the
membrane, then the total volume flux Jva generated within these pores equals the
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solvent flux Jvwa. No solute flow takes place in these pores (jsa = 0 since σa = 1).
As for equation (6), it is concerned with pores nb, i.e. pores permeable to both
the solvent and the solute molecules. With the osmotic ∆Π and mechanical ∆P
pressures across the membrane the equation can be rewritten as:

Jvb = Lpb∆P − Lpbσb∆Π = Lpb∆P

since the reflection coefficient σb of pores nb equals 0. We note that the volume
flux Jvb has two components:

Jvb = Jvwb + Jvsb > 0 (20)

where Jvwb is the solvent (e.g. water) volume flux, and Jvsb is the solute volume
flux. Both fluxes are generated by simultaneous processes of filtration (induced by
∆P ) and diffusion (since ∆Π > 0). In its full generality the problem is rather
complex and we consider a simpler case when ∆P = 0 and ∆Π > 0 first. In this
case only the solute and solvent diffusion in opposite directions takes place and the
analogue of equation (20) has the form:

J∆Π
vb = J∆Π

vwb + J∆Π
vsb = 0 (21)

where as before J∆Π
vwb is the solvent volume flux and J∆Π

vsb – the solute volume flux.
They satisfy the condition: ∣∣J∆Π

vb

∣∣ = ∣∣J∆Π
vsb

∣∣ 6= 0 (21a)

where J∆Π
vwb < 0 and J∆Π

vsb > 0, and can be expressed as:

J∆Π
vwb = j∆Π

wb v̄w (22)

and
J∆Π

vsb = Lpbc̄ v̄s∆Π (23)

where: c̄ = 1
2 (c1 + c2), c̄ is the mean solute concentration, and v̄w, v̄s are partial

molar volumes of the solvent (w) and the solute (s). Denoting the J∆Π
vsb by J ′vs0 we

get:
J ′vs0 = Lpbc̄ v̄s∆Π

Since J ′vs0 = j′s0v̄s, we can write:

J ′s0 = Lpbc̄∆Π (24)

Taking into account equation (14), i.e. Lpb = (1 − σ)Lp, we obtain the following
expression for the solute flux generated under condition ∆P = 0:

j′s0 = ω′0∆Π (25)
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where
ω′0 = c̄Lp(1− σ) (26)

We note that j′s0 = jd, where jd is the diffusive solute flux, and thus ω′0 = ωd is the
coefficient of diffusive solute permeation. The above equations can then be written
as:

jd = ωd∆Π (27)

where
ωd = c̄Lp(1− σ) (28)

The last step can be justified by revisiting equations (21), (21a), (22) and (23).
From these equations we get:

jwbv̄w = jsbv̄s

where j∆Π
wb = jwb, and j∆Π

sb = jsb = Lpbc̄∆Π. Noting that jwb = c̄wvw, and
jsb = c̄vs (where νw and νs are velocities of the solvent and the solute, respectively),
we get:

c̄wv̄wνw = c̄v̄sνs (29)

If the membrane separates diluted solutions, and this is the case we consider here,
then we assume c̄w ≈ 1. Moreover, in this case c̄w � c̄ as well. Therefore for
solutes for which v̄s does not differ significantly from v̄w equation (29) yields νw �
νs. In other words in pores nb the velocity νw of solvent molecules is negligible
compared to the velocity νs of the solute molecules. We conclude that the velocity
of solute convection by the solvent flow is negligible as well. This justifies putting
j′s0 ≈ jd. We emphasize that equation (28) represents a correlation relation among
parameters Lp, σ and ωd. It allows computation of any of the parameters if the
other two are known. We elaborate this formula further later in the paper. For
now let us only mention that, when equations (10) and (11) are substituted, this
equation has a form:

ωd =
(LpaLpb + L2

pb)c̄

Lp

Let us consider now the convection flux jk. In our framework this flux is generated
in pores nb only and can be written as:

jk = c̄Jvb (30)

Equations (7) and (14) yield:

Jvb = Lpb∆P = (1− σ)Lp∆P

hence we finally get:
jk = (1− σ)c̄Lp∆P (31)
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This flux is generated by pressure ∆P ; it is practically not affected by the osmotic
pressure ∆Π as we argued in the preceding paragraph. In summary, the total solute
flux (which we for now denote js) generated by both ∆P and ∆Π equals:

j′s = jd + jk

Considering equations (27) and (34) we get:

j′s = ωd∆Π + (1− σ)c̄Lp∆P (32)

The above expression and equation (15) constitute the mechanistic transport equa-
tions.

Functional comparison of mechanistic equations with the thermody-
namic Kedem-Katchalsky equations. Formalism equivalence

In this section we compare both sets of equations, mechanistic and Kedem-Katchal-
sky (KK), first the volume flux equation and then the solute flux equation. We show
their equivalence and derive a correlation relation for the transport parameters
appearing in the KK formalism.

Equations for the volume flux

Comparing the mechanistic equation for the volume flux (i.e. equation (15)) with
the corresponding KK equation (i.e. equation (1)) we immediately notice they have
identical form. Moreover, parameters Lp and σ have analogous definitions. Namely,
in both equations the filtration coefficient is defined as:

Lp =

(
Jv

∆P

)
∆Π=0

Similarly for the reflection coefficient – given as:

σ =

(
∆P
∆Π

)
Jv=0

It comes therefore as no surprise that both formalisms suggest similar experimental
methods for measurements of both parameters. The equations are thus equivalent,
even despite the fact that the interpretation of the reflection coefficient is somewhat
different. In KK approach it is given as (Kedem and Katchalsky 1958, 1961, 1963;
Katchalsky and Curran 1965):

σ = −
LpD

Lp

where LpD is called an osmotic flux coefficient. In our mechanistic formalism the
same coefficient is interpreted as:

σ =
Lpa

Lp
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where, let us recall, Lpa is the filtration coefficient of pores na (i.e. impermeable to
the solute). That suggests that parameters LpD and Lpa should be treated as the
same.

We want to emphasize that measurements of parameters Lp and σ are quite
simple, even on biological membranes. We return to this point in section entitled:
Measurements of transport parameters. Sample results, dealing with measurements
of parameters ω and ωd.

Solute flux equation. Correlation relation for transport parameters

The solute flux is described in our mechanistic formalism by equation (25). Taking
into account correlation relation for parameters Lp, σ and ωd, i.e. equation (21):

ωd = (1− σ)c̄Lp

the solute flux can be written as:

j′s = (1− σ)c̄Lp∆Π + (1− σ)c̄Lp∆P (33)

In the KK formalism the solute flux is given by equation (2), i.e.:

js = ω∆Π + (1− σ)c̄Jv

where ω is the solute permeation coefficient and Jv – the volume flux (equation
(1)).

We want to show that both expressions are equivalent. To that end, let us
assume that a mechanical pressure:

∆P = ∆Pm = σ∆Π

is applied to the membrane. The above equations thus assume the forms:

j′s = jsm = (1− σ)c̄Lp(1 + σ)∆Π (34)

and
js = jsm = ω∆Π (35)

respectively. Here jsm = j′s = js denotes the value of solute flux permeating in the
membrane under this particular mechanical pressure ∆P = ∆Pm = σ∆Π. From
equations (34) and (35) it follows:

ω = (1− σ)c̄Lp(1 + σ) = (1− σ2)c̄Lp = ωd(1 + σ) (36)

This is a correlation relation for parameters Lp, σ and ω introduced in KK equa-
tions.
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Returning now to the general case of equations (33) and (2), we substitute
relation (36) to (2). We obtain:

js = (1− σ)c̄Lp(1 + σ)∆Π + (1− σ)c̄Lp∆P − (1− σ)c̄Lpσ∆Π =

= ωd∆Π + (1− σ)c̄Lp∆P = j′s

Thus the KK equation is indeed equivalent to the mechanistic equation and the
fluxes predicted by both equations are the same (js = j′s). Hence the mechanistic
equation can finally be written as:

j′s = ωd∆Π + (1− σ)c̄Lp∆P (37)

Parameter ωd ought to be determined from condition:

ωd =

(
jd

∆Π

)
∆P=0

(38)

since for ∆P = 0 we have js = jd

Reduced equations

Using relation (28) we can rewrite the mechanistic equations ((15) and (37)) in a
reduced (using equation (36)) form containing only two phenomenological param-
eters:

Jv = Lp∆P − Lpσ∆Π (39)

j′s = (1− σ)c̄Lp∆Π + (1− σ)c̄Lp∆P = (1− σ)c̄Lp(∆P + ∆Π)

Similarly, the KK equations (1) and (2) can be reduced to a form:

Jv = Lp∆P − Lpσ∆Π (40)

js = (1− σ2)c̄Lp∆Π + (1− σ)c̄Jv

Measurements of transport parameters. Sample results

Transport parameters Lp and σ introduced in KK equations, as well as in our mech-
anistic equations, can be conveniently measured based on the following equations:

Lp =

(
Jv

∆P

)
∆Π=0

and

σ =

(
∆P
∆Π

)
Jv=0



Mechanistic Formalism for Membrane Transport 63

The situation is quite different for the permeation coefficient ω (in KK formalism)
and ωd (introduced in the mechanistic formalism). They are defined as:

ω =

(
js

∆Π

)
Jv=0

and

ωd =

(
jd

∆Π

)
∆P=0

Let us recall that according to equation (28) they are related:

ω = ωd(1 + σ)

Accordingly, the coefficient ωd ought to be measured with ∆P = 0. On the other
hand, the definition of ω requires condition Jv = 0, i.e. a situation when there is
a nonzero mechanical pressure ∆P = σ∆Π on the membrane. In our mechanistic
model such mechanical pressure drives a volume flux Jvb in pores nb (permeable
to the solute). It can be written as (Kargol and Kargol 2000; Kargol 2001):

Jvb = J∆P
vwb + J∆Π

vwb + Jvd + Jvk (41)

where: J∆P
vwb – solvent flux driven by ∆P , J∆Π

vwb – solvent flux driven by ∆Π, Jvd –
solute volume flux generated diffusively, and Jvk – convective solute volume flux.
In this case, in order to determine the value of parameter ω we need to find js first.
The flux is measured as:

js =
∆m
S∆t

where ∆m is the solute mass permeating across the membrane (with the active
surface area S) during time ∆t. Mass ∆m can be found as:

∆m = ∆ctV

where: ∆ct is the change of concentration of solution on either side of the membrane
occurring in time ∆t, and V – volume of that solution. From equation (31) we can
see that the concentration change ∆ct, and therefore flux js is affected by fluxes
J∆P

vwb, J∆Π
vwb, Jvd and Jvk. In other words parameter ω is determined under fairly

complex conditions.
The case is somewhat clearer for coefficient ωd. However, still if ∆P = 0 then

fluxes Jvd and Jvwa affect the measured value of ωd. We conclude that experimen-
tal measurements of parameters ω and ωd are difficult and sometimes impossible.
In such cases of particular importance the correlation relations among transport
parameters are derived in this paper, i.e. equations (21) and (28).

We illustrate these relations on selected membranes and solutes shown in Ta-
ble 1. For all of these systems transport parameters Lp, σ and ω = ωex were
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Table 1. Values of transport parameters

Membrane σ Lp × 1012 ωex × 1010 c̄ ω × 1010 ωd × 1010

Solution [m3/Ns] [mol/Ns] [mol/m3] [mol/Ns] [mol/Ns]

Neprophane
Ethanol 0.025 5.0 21.0± 3.0 400 19.9 19.5

Neprophane
Glucose 0.065 5.0 8.0± 1.5 200 9.95 9.35

Cellophane
Ethanol 0.02 2.23 6.3± 1.3 300 6.68 6.55

Cellophane
Glucose 0.1 2.23 2.3± 1.2 150 3.31 3.01

Dialysis
membrane
Glucose

0.13 1.09 2.3± 1.2 300 3.21 2.84

measured using standard methods (Kedem and Katchalsky 1961; Katchalsky and
Curran 1965; Grygorczyk 1978; Kargol 1994). Parameters σ and ωex were mea-
sured for Jv = 0. The value of ωex is a mean of several measurements and the error
reported – the average deviation from the mean. The last two columns in Table 1
show coefficients ω and ωd (computed from equations (28) and (21)). The computed
results show satisfactory agreement with the experiment. Also, values of ωd are no-
ticeably smaller than the corresponding ω’s, as the difference in thermodynamic
and mechanistic equations for the solute flux suggests.

Conclusion

1. We considered membrane transport processes generated by osmotic and
mechanical pressure difference. New model and a new interpretation has been pro-
posed for transport across a typical porous membrane having a number N of pores
of varying sizes. We assumed (Kargol and Kargol 2000; Kargol 2001; Kargol et al.
2001) that a single pore has a reflection coefficient (suitably re-defined) equal to 0
or 1.

2. We derived mechanistic transport equations which we believe have a clear
physical interpretation. They have the form:

Jv = JvM = Lp∆P − Lpσ∆Π

j′s = jsM = ωd∆Π + (1− σ)c̄Lp∆P

3. We showed that the mechanistic equations are equivalent to the KK equa-
tions, assuming:

ω = (1− σ)c̄Lp(1 + σ)
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and
ωd = (1− σ)c̄Lp

These equations show correlation relations among the transport parameters Lp, σ,
and ω (for the KK formalism) and Lp, σ, and ωd (for the mechanistic approach).
Accordingly, one of the parameters from each set can be computed if only the other
two are known. In particular we refer here to parameters ω and ωd, measurements
of which are typically rather difficult.

4. Considering the correlation relations, the mechanistic and KK equations
were reduced to a form involving only two, as opposed to usual three, phenomeno-
logical transport parameters.

5. We believe that because of this work, the results concerning membrane
mass transport (generated by osmotic and mechanical pressure) can be analyzed
and interpreted in a clearer and more detailed way.

In particular, here we have in mind studies directed towards understanding
the passive transport processes of water and solutes across cell membranes. It is
sufficient to say that each cell has to exchange water and various substances with
its medium in order to live. In other words it must take up water and solutes
and excrete them with products of its metabolism. This exchange goes on across
the cell membrane and with its active participation. Processes of this exchange
belong to fundamental ones from the biological point of view. It is impossible to
gain knowledge of them using only the KK equations. Radically more useful in this
respect are the mechanistic transport equations. This is also substantiated by our
recent result (in preparation).

Appendix

In general the KK equations (1) and (2) lack clarity of interpretation (Kargol and
Kargol 2000; Kargol 2001). It concerns the solute flux (eq. (2)) in particular:

js = ω∆Π + (1− σ)c̄Jv

Parameter ω in the first term of the right hand side is given by:

ω =

(
js

∆Π

)
Jv=0

It expresses the magnitude of the solute flux generated by unit osmotic pressure,
when Jv = 0, i.e. when there are both the osmotic pressure ∆Π and hydraulic
pressure ∆P = ∆Pm = σ∆Π. It means that the flux js is generated jointly by the
pressures ∆Π and ∆Pm. Hence it cannot be simply the diffusive flux and parame-
ters ω should not be regarded as a measure of purely diffusive solute permeation.
Frequently it is treated as such (Spiegler and Kedem 1966; Sha’afi et al. 1970;
Steudle et al. 1987; Ślęzak 1989; Ślęzak et al. 1989; Ślęzak and Turczyński 1992;
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Waniewski 1994; Kargol 1996 and others). We conclude that it is not clear what
transport mechanisms the coefficient ω describes.

It is commonly stated that the second term in equation (2), i.e. the term (1−
σ)c̄Jv represents the convective solute flux (the flux carried by flow Jv). Although
such interpretation may seem convincing, if we rewrite the equation into the form:

js = ω∆Π + (1− σ)c̄Lp∆P − (1− σ)c̄Lpσ∆Π

then certain difficulties in the interpretation of the last two terms arise (i.e. terms
(1− σ)c̄Lp∆P and (1− σ)c̄Lpσ∆Π).

In the framework of mechanistic analysis (as performed in this work) one might
notice that the above mentioned issues with interpretation of the KK solute flux
equation result from a misleading form in which the equation is typically presented.
If we rewrite it as:

js = [ω − (1− σ)c̄Lpσ]∆Π + (1− σ)c̄Lp∆P

and taking into account equations (28) and (36), i.e. ωd = (1 − σ)c̄Lp and ω =
ωd(1 + σ), we obtain:

js = ωd∆Π + (1− σ)c̄Lp∆P

where ωd is the coefficient of the solute diffusive permeation across the membrane.
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Ślęzak A. (1989): Irreversible model equations of the transport across a horizontally mem-
brane. Biophys. Chem. 34, 91—102

Ślęzak A., Turczyński B. (1992): Generalisation of the Spiegler-Kedem-Katchalsky fric-
tional model equations of the transmembrane transport for multicomponent non-
electrolyte solutions. Biophys. Chem. 44, 139—142
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