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Effects of Mechanical Interaction
Between Two Rabbit Cardiac Muscles Connected in Parallel
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Abstract. The hypothesis that myocardium mechanical inhomogeneity produces
a substantial effect on mechanical function was tested. Muscle inhomogeneity was
studied in isolated papillary muscles or trabeculae excised from rabbit right ventri-
cle and connected in a parallel duplex. Each muscle was placed in a separate per-
fusion bath. One end of each muscle was fastened to an individual force transducer
and the other to the common lever of a servomotor. This arrangement allowed both
muscles, being excited independently, to pull jointly a load applied to the lever.
Separate electrodes for each perfusion bath allowed to stimulate muscles with a
time delay. Tension developed in the individual muscles and their interaction were
studied. Developed tension was critically dependent on the timing and sequence
of excitation. Using mathematical modeling, patterns of tension distribution ex-
perimentally observed in parallel duplexes were simulated. These results suggest
that changes both in Ca2+ transients and in the time course of Ca2+-troponin
complexion due to the duplexed muscles interaction offset the effect of mechanical
inhomogeneity.
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Introduction

Cardiac muscle is non-uniform. The scale of this non-uniformity ranges from molec-
ular (Noble et al. 1983; Samuel et al. 1983; Whallen 1985) to macroscopic, cover-
ing whole segments of heart chambers (LeWinter et al. 1975; Hosino et al. 1983;
Markhasin et al. 1994). Using various methods including echocardiography (Haed-
chen et al. 1983; Pandian et al. 1983), contrast ventriculography (Klausner et al.
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1982; Sheehan et al. 1983; Markhasin et al. 1994), and nuclear magnetic resonance
(Azhari et al. 1992), researchers have demonstrated substantial variability in the
magnitude of deformation of various segments of heart chamber wall during systole.
Numerical experiments using mathematical models predict that differences in force
exist in the various layers of the myocardium, ranging from endo- to epicardium
(Huisman et al. 1980; Beyar and Sideman 1987).

Inhomogeneity of the myocardial wall increases appreciably during pathologic
states. Ischemic and infarcted areas in the heart chambers change their kinetics
during systole (Tennant and Wiggers 1935). The ability of the myocardium to
shorten changes both in the affected areas and in those remote from the focus
of damage (Gallagher et al. 1986). In addition, segmental inhomogeneity of the
myocardium substantially influences left ventricular systolic (Markhasin et al. 1994)
and diastolic function (Lew and Rasmussen 1989; Schafer et al. 1992).

The study of properties of mechanical inhomogeneity could widen the paradigm
of cardiac biomechanics (Katz 1988; Katz and Katz 1989) and help to understand
the contribution of mechanical inhomogeneity to the heart regulation both in norm
and pathology.

It is extremely difficult to assess the fundamental impact of mechanical inho-
mogeneity on myocardial ino-, lusi- and ergotropic functions in the intact heart
due to its complexity. To resolve this problem, it is necessary, at least in prelim-
inary studies, to use simplified inhomogeneous muscle systems as models of the
inhomogeneity phenomena in the intact heart. We presume that any real compli-
cated inhomogeneous system of any level, from cellular one to the entire heart, is
a composition of the simplest inhomogeneous sub-systems, each being represented
by the duplex, i.e. by two elements connected either in parallel or in series. Such
representative duplexes in various cases may be either (i) elementary pairs (two ad-
jacent interacting fibers or even sarcomeres) or (ii) two parallel segments within the
ventricle circular layer or (iii) specifically for pathological conditions, pairs consist-
ing of entire normal and abnormal myocardial segments (e.g. an ischemic segment
interacting with an adjacent normal one).

A duplex muscle system we use for a simplified in vitro model of non-uniform
myocardium is composed as follows. Two papillary muscles from the right ventricle
of a rabbit, or two trabeculae, were removed and connected in parallel. These two
muscles might differ from each other by a number of characteristics, including
time to peak isometric force, isometric force amplitude, maximum muscle length
(Lmax), unloaded shortening velocity (Vmax), shortening magnitude under a given
normalized afterload. All these differences occur in intact heart in these or other
types of inhomogeneity. For example, parallel segments in the circular layer may
differ in the length (due to the different curvature), in the time to peak isometric
force, and in Vmax. Besides, adjacent infarcted area and normal region interacting
in the heart may also have different length and shortening magnitudes, etc.

Initially, mechanical characteristics of each of the muscles contracting individ-
ually were recorded. Next, the same characteristics were recorded when the muscles
contracted within the duplex. In this way we were able to estimate the mechanical
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effects of the muscles on each other. Moreover, by varying the mechanical charac-
teristics of the muscles in the duplex physically and pharmacologically the effect
of mechanical non-uniformity on the duplex as a whole was estimated.

Mathematical modeling was applied to clarify the possible mechanisms un-
derlying the effect of non-uniformity on mechanical function of the myocardium.
Specifically, we simulated interactions between two muscles connected in a parallel
duplex. Model analysis enabled us to trace the effect of mechanical non-uniformity
on the kinetics of free intracellular Ca2+ and Ca2+-troponin complexes in a non-
uniform myocardial system. We had previously published some results of theoretical
analysis of inhomogeneous muscle duplexes obtained by means of a mathematical
model (Markhasin et al. 1997a). However here, as compared to the mentioned
study, we applied a more profound version of the mathematical model (Katsnel-
son and Markhasin 1996) for describing elements of the inhomogeneous duplex. In
particular, the role of calcium uptake by the sarcoplasmic reticulum in regulation
of myocardium contraction was taken into account in this version.

This paper illustrates how the distribution of the time course of force in each
of the elements of an isotonically contracting muscle duplex is modified by this
interaction, and how it responds to delays in the excitation between two muscles.
The duplex mathematical model demonstrates a possibility to simulate adequately
both the mechanical behavior of duplex members and associated changes in the
kinetics of free intracellular Ca2+ and Ca2+-troponin complexes.

Materials and Methods

Muscle Preparation

Experiments were performed on rabbits whose weight ranged from 1.5 to 2 kg.
Before experimentation rabbits received heparin (0.3 ml/kg i.v.) to prevent clot
formation and pentobarbital Na (30 mg/kg i.v.) as an anesthetic. The chest was
opened and the heart rapidly removed and washed with a buffer solution which
contained (in mmol/l): NaCl, 137; KCl, 2.5; MgCl2, 1.0; CaCl2, 2.5; glucose, 4.0;
Trizma HCl, 10; and Trizma base, 10. The pH of the solution was 7.3 ± 0.05 at a
temperature in the range from 28 to 31◦C. The buffer was bubbled with O2. Two
papillary muscles or thin trabeculae were then excised from the right ventricle.
Preparations were 3–5 mm long with a cross-sectional area between 0.5 and 0.7
mm2.

Muscle preparations were placed in dual 5 ml perfusion baths each of which
contained a pair of platinum electrodes for electric field stimulation. One end of
each preparation was fixed to the lever of a custom servomotor common for both
muscles, and the other to a custom force transducer, which operated independently
for each muscle. Shortening of the muscles in the duplex was common, but each of
the muscles developed its own force.

In all experiments, preparations were stimulated at a frequency of 0.3 Hz
by rectangular pulses of 5 ms duration exceeding threshold by a factor of 1.3. All
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preparations were initially stretched to the length at which maximal isometric force
was obtained (Lmax) and stimulated for an hour until contractions reached steady-
state amplitude. The stretching of every preparation was carried out by means of
separate micro-screw. We stretched that end of the sample which was directed to
the force transducer, i.e. that one which then remained motionless during all further
movements of the sample. Before each experiment the length of the muscle was set
at 0.95 Lmax. For all preparations the passive to active force ratio [Fpe/Fse] was
determined at 0.95 Lmax. The preparations were considered suitable if the [Fpe/Fse]
ratio did not exceed 0.15.

The amplitude and the time to peak force (TPF) of the isometric contractions
were monitored throughout the experiment (4–5 hours). Results of experiments
with amplitude variations exceeding 5 % and with TPF variations exceeding 3 %
were not accepted for the final analysis. 36 muscle duplexes from 48 rabbits were
successfully studied.

Experimental Processes

A block diagram of the experimental setup is shown in Fig. 1.

Figure 1. Block diagram of the setup.

A custom software package was developed for the protocols used during each
experiment. These programs enabled an automated experiment to be performed on
two preparations connected in parallel. The protocol included recordings of passive
length-force relationships, an isometric protocol for different lengths of the prepara-
tions, an isotonic protocol, and a physiological protocol. The physiological protocol
contained a physiological sequence of mechanical loads and allowed reproduction
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of the mechanical loading phases which occur in the intact heart. Afterload was
computed as a portion of the maximal force (F0) with an increment of 0.1 F0.

The parallel elastic element (PE), series element (SE), and contractile element
(CE) are components of the classical three-element model of a cardiac muscle.
All of our experiments were performed at the length 0.95 Lmax. The passive force
developed by the muscle, which is associated with the PE, was only allowed to
reach 15% of the developed active force.

Passive length-force characteristics were determined by shortening the length
of the duplex preparations to zero passive force and then returning to initial levels
in the absence of stimulation. Since the PE has a viscoelastic nature, force of
the PE depends not only on the length but also on the velocity and direction of
length changes. The length-force relationship for the PE should be recorded during
changes of length at approximately the same velocity and in the same direction as
occurs in vivo. Though CE is not fully compliant even in an unstimulated muscle, its
residual stiffness is so small that it may be neglected when specifying experimentally
“passive deformation – passive tension” relationship for the PE. The force and
length of both preparations were recorded during shortening. Filtering was applied
to eliminate the effect of noise on the dependencies obtained. This line of testing was
used to establish the working length of preparations, as well as for the elimination
of the PE role.

In particular we were then able to apply our method (Markhasin et al. 1997b)
of eliminating the PE role. The dependence FPE(L) of the passive force on the
length was previously recorded. This enabled us to set an algorithm of muscle
loading for each current length L. Load on the muscle, F (L) = d+ FPE(L), where
d is a constant. The CE is then under the same constant load d. The elimination of
the PE role alters the slope of the length-force and force-velocity relationships. The
method has been used both for every muscle of the duplex in individual contraction
and for the duplex as a whole. Described methodology permits mechanical charac-
teristics, for example length-force and force-velocity relationships to be estimated
for the CE.

The setup calibration program ensured the calibration both of the force and
length transducers and of the temperature-sensitive element. A custom data pro-
cessing program was used to analyze the time course of force development and
changes in the length and rate of shortening during isometric, isotonic and physi-
ological regimes. The program produced graphic and tabulated representations of
the inotropic and lusitropic characteristics (such as the length-force, force-velocity,
performance-shortening, characteristic relaxation time-shortening) of the muscles
contracting in isolation, within a duplex and as a duplex pair.

Mathematical Modeling of Muscle Duplexes

Main problems in duplex modeling are associated with the choice of a suitable ba-
sic uniform fiber model. Therefore, mathematical modeling of non-uniform muscle
duplex contractions should be based on a carefully designed model of an uniform
myocardium. The mathematical model of an uniform myocardium is in fact based
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on an elementary contractile structure, i.e. a sarcomere placed in an appropriate
rheological medium (Appendices 1, 2). It is sufficient to mathematically describe
a parallel connection of two dissimilar sarcomeres (simulated by assuming various
values for the model parameters) and to watch the effects of this connection in
numerical experiments. In comparison with a physiological experiment, modeling
allows us to observe how contractile protein activation processes vary in response
to redistribution of loads, and to estimate the role of these changes on the function
of the non-uniform duplex system. It is especially important that this model cor-
rectly reflects the feedback between the mechanical characteristics of a contract-
ing uniform fiber and its activation. In fact a significant redistribution of loads
occurs between the connected muscles within a parallel duplex system. The above-
mentioned feedback can therefore introduce substantial corrections in the resulting
behavior of each individual muscle and of the duplex as a whole. We have devel-
oped the basic model used in this study earlier (Izakov et al. 1991; Katsnelson and
Markhasin 1996) and it is briefly described in Appendix 2. The above-mentioned
feedback mechanisms are allowed for in this model with the help of two types of
cooperativity established for contractile proteins.

Numerical Experiments

The duplex modeling program was implemented on an IBM PC using CI language.
This program allows the variation of the mechanical characteristics of each of the
“muscles” in the duplex model by setting specific numerical values for its parame-
ter (Appendix 2, 3), such as: the series elasticity (β1), a force scaling factor, which
can be interpreted as the thickness of the fiber (λ), the slope and the duration of
the ascending limb of the calcium transient (ac, td), the rate constant of calcium
binding by troponin (c1), the slope of the length-force relationship (this slope we
varied choosing different values of parameter µ responsible for the end-to-end co-
operativity of CaTn), the delay in the excitation of one “muscle” in the duplex
relative to the other (∆).

One “muscle” served as a reference corresponding to a set of basic values
for the parameters. The value of one or several of the parameters was then var-
ied in the other “muscle”. Thus, in contrast to in vitro experiments, the model
makes it possible to attribute differences in mechanical characteristics between the
“muscles” of a duplex to variations in specific features of given intracellular sys-
tems.

In numerical experiments, we simulated duplexes composed of various asyn-
chronously contracting “muscles”. In both numerical and physiological experi-
ments, an interaction between muscles undergoing isotonic and physiologic con-
traction protocols was investigated. The following mechanical characteristics were
recorded: the time course of isometric contractions in each “muscle”, the length-
force and force-velocity relationships, and the time course of relaxation. We also
calculated the kinetics of free intracellular Ca2+ and the time course of the activa-
tion of the contractile proteins by Ca2+(due to the formation of CaTn complexes)
in each of the “muscles” when connected in a non-uniform duplex.
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Results

Physiological experiments

To demonstrate the effect of inhomogeneity in the duplex system experimentally,
we first recorded the contractions of each of the two muscles under various con-
stant loads. We then recorded contractions under similar relative loads of the entire
duplex composed of these muscles, and the respective forces developed by the mus-
cles during their interaction in the duplex. In the duplexes, the muscles contracted
auxotonically, i.e. under variable loads. The 36 duplexes investigated displayed a
variety of mechanical characteristics. A group of duplexes was recognized where
the muscle displayed typical individual behavior.

An experimental recording of mechanical activity in a duplex and its muscles
using a physiological sequence of mechanical loads illustrates the effect of changes
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Figure 2. Experimental record of mechanical activity in a duplex composed of two mus-
cles connected in parallel under a physiological sequence of loads: A. shortening under the
given relative afterload; B. force developed by the duplex; C. force developed by the first
muscle of the duplex; D. force developed by the second muscle of the duplex. Mechanical
properties of the first muscle and second muscle are as follows. Lmax: 4.0 mm, 5.0 mm;
F0 – maximal isometric force: 3.4 mN, 6.86 mN; TPF – time to peak force: 246 ms, 346
ms; ∆L – the maximum shortening of a muscle under a relative load equal to 0.1F0: 0.44
mm, 0.79 mm; Vmax – the maximal velocity of shortening of a muscle under a relative
load equal to 0.1F0: 2.85 mm/s, 3.93 mm/s, respectively.
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in load (Fig. 2). The mechanical properties of the muscles forming this duplex were
quite different. Fig. 2B shows the force development of this duplex undergoing
isometric contraction at different relative afterloads (0.1 to 0.8 F0). Highlighted
here are the effects of changes in load on the first (Fig. 2C) and second (Fig. 2D)
muscles of the duplex pair. During shortening under a constant load on the duplex,
a steep decline in the force of the first muscle and an increase in the force of the
second muscle are observed. During isometric relaxation both muscles of the duplex
begin to relax simultaneously. Note that in this experiment the force of the parallel
elastic element was not subtracted. This explains the occurrence of a negative force
in the first muscle. In all the other experiments in this paper the force of the parallel
elastic element has been subtracted.

The redistribution of loads on muscles when they contract as a duplex can be
of a complex, polyphasic character (Fig. 3). Under a constant load on the duplex,
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Figure 3. Experimental record of mechanical activity in a duplex composed of two mus-
cles connected in parallel undergoing isotonic contraction: A. shortening under the given
relative afterload; B. force developed by the duplex; C. force developed by the first muscle
of the duplex; D. force developed by the second muscle of the duplex. Mechanical proper-
ties of the first muscle and second muscle are as follows. Lmax: 5.0 mm, 4.0 mm; F0: 12.0
mN, 13.24 mN; TPF: 364 ms, 450 ms; ∆L: 0.58 mm, 0.40 mm; Vmax: 3.93 mm/s, 1.72
mm/s, respectively. Dashed traces indicate average values of force to reveal magnitudes
of force oscillations.
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the increase in force of the first muscle in this duplex is retarded (Fig. 3C). The
force of the second muscle is characterized by marked fluctuations relative to the
level of the load (as shown in Fig. 3D by the dashed lines).

Some duplex pairs exhibited behavior that was typical of the individual muscles
that composed them, i.e. each muscle in a duplex contracted almost isotonically.
Such a redistribution of mechanical loads is characteristic for duplexes consisting
of muscles demonstrating similar mechanical properties such as the amplitude of
isometric contractions, TPF, and maximum shortening velocities.

Figs. 2 and 3 apply to the cases where the muscles were excited simultane-
ously, although they had different time courses of force development, i.e. were asyn-
chronous. Non-simultaneous excitation of the muscles in a duplex pair was used
as the other method of composing asynchronous duplexes. A group of experiments
designed to study the effects of asynchronism in the duplex on the mechanical char-
acteristics of the myocardium, showed a substantial effect of asynchronism on the
distribution of loads in the muscles of a duplex pair.

An example of an initial asynchronous duplex (muscles had different TPF of
isometric contractions) is shown in Fig. 4. During a contraction of this duplex, the
force of the first muscle was observed to fall off monotonously. Growth in the force
of the second muscle demonstrates a biphasic pattern at large afterloads. During
the isometric phase of duplex relaxation the force of the second muscle continues
to grow.

By delaying the excitation of the first muscle relative to the second by 130
ms we obtained a duplex exhibiting coincidence of the peaks of the isometric con-
tractions of the individual muscles (Fig. 5). This led to a sharp change in the
redistribution of loads in the duplex. The isometric contraction of this duplex dis-
plays a gentle increase in force for 200 ms followed by 250 ms of steeper growth
(Fig. 5B). During the isotonic phase of the duplex shortening and prior to the co-
incidence of peaks, the first muscle declined in tension (Fig. 5C) and the second
displayed a polyphasic increase in force (Fig. 5D). Following the peak of isomet-
ric contraction the pattern reversed. The force of the first muscle was observed to
increase, while that of the second showed a polyphasic decrease. The character of
this decrease, however, is different from that which occurred before the coincidence
of peaks. During isometric relaxation, the force of contraction of the second muscle
continues to increase at large afterloads. A pattern of load redistribution similar to
that observed in the initially asynchronous duplex (Fig. 4) is obtained by delaying
the excitation of the second muscle relative to the first by 100 ms, but accompanied
by a steeper decline in the force of the first muscle and a steeper growth in the
force of the second one than in the previous example.

Numerical experiments

In the previous examples we presented the results of the physiological experiments
on inhomogeneous muscle duplexes. In order to understand how the mechanical
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Figure 4. Experimental record of mechanical activity in an initially asynchronous du-
plex (asynchronism – 130 ms) composed of two muscles connected in parallel under a
physiological sequence of loads: A. shortening under the given relative afterload; B. force
developed by the duplex; C. force developed by the first muscle of the duplex; D. force
developed by the second muscle of the duplex. Mechanical properties of the first muscle
and second muscle are as follows. Lmax: 4.0 mm, 4.2 mm; F0: 8.87 mN, 11.67 mN; TPF:
300 ms, 430 ms; ∆L: 0.52 mm, 0.66 mm; Vmax: 3.93 mm/s, 3.93 mm/s, respectively.
x indicates the end of the afterloaded phase of a duplex contraction.

behavior of the muscles of a duplex can be dependent on the internal parameters of
the system, we used a mathematical model within which inhomogeneity could be set
by varying the parameters controlling the contractile action of each of the muscles.
In this work, we used duplexes composed of three simulated “muscles”. Two of them
(“muscle 2” and “muscle 3”) were obtained from “muscle 1”, characterized by a
basic set of parameters, by changing certain parameters of the model (Appendix 3).

Fig. 6 shows the results of a representative numerical experiment on a duplex
consisting of “muscles” 2 and 1. The value Lmax = 2.24 µm/sarcomere was chosen
for the model as Lmax of the “muscle” according to laser diffraction data. All lengths
in the numerical model are related to the sarcomere, i.e. the current length, the
end-systolic length and the shortening of a fiber are expressed as the current length,
the end-systolic length and the shortening of the sarcomere of this fiber.
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Figure 5. Experimental record of mechanical activity in a duplex obtained by delaying
the excitation of the first muscle with respect to the other by 130 ms (coincidence of peak
isometric contractions of the muscles): A. shortening under the given relative afterload;
B. force developed by the duplex; C. force developed by the first muscle of the duplex;
D. force developed by the second muscle of the duplex.
x indicates the moment of the end of afterloaded phase of the respective duplex contrac-
tion.

Figs. 6A and 6B show the in vitro shortening of the duplex under different
relative afterloads (0.1 to 0.9 F0), and the simulated development of force by a
numerical duplex undergoing isometric contraction. Fig. 6 illustrates the pattern
of change in the load in the first (Fig. 6C) and second (Fig. 6D) “muscle” during
a contraction of the duplex. This duplex is characterized by the redistribution of
loads in it so that the force of the first “muscle” is observed to decline during
the isotonic phase (Fig. 6C) while that of the second “muscle” increases (Fig. 6D)
over the entire range of duplex shortenings. Note that the relationship between
the mechanical characteristics of the “muscles” forming this simulated duplex is in
agreement with the physiological experiment shown in Fig. 2.

Fig. 7 shows a marked polyphasic pattern of changes in the force of the “mus-
cles” contracting within the duplex. Under a constant load on the duplex, the in-
crease in force of the first “muscle” is replaced by a decline in force (Fig. 7C). The
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Figure 6. Results of numerical experiment for the duplex model: A. changes in the
length of the “muscle” during shortening; B. force developed by the duplex; C. force
developed by the first “muscle” of the duplex; D. force developed by the second “muscle”
of the duplex. Mechanical properties of the first “muscle” and second “muscle” are as
follows. Lmax: 2.24 µm/sarcomere, 2.24 µm/sarcomere; F0: 4 mN, 8.55 mN; TPF: 155
ms, 235 ms; ∆L: 0.18 µm/sarcomere, 0.34 µm/sarcomere; Vmax: 0.41 µm/s, 0.68 µm/s,
respectively. Vmax is the maximum shortening velocity of the muscle at a given afterload
in fractions of Vm (Vm is a model parameter equal to 2.5 muscle length/s, which sets a
certain maximum-velocity limit).

force of the second “muscle” demonstrates a marked polyphasic pattern (Fig. 7D).
The initial increase in the force is replaced by a decline, followed by a subsequent
steep increase. A polyphasic pattern, similar to that observed in the numerical ex-
periment, was observed in the physiological experiment as well (Fig. 3). However,
in this numerical experiment we failed to obtain the same relationship between the
mechanical characteristics of the “muscles” of the duplex as in the physiological
experiment.

Numerical experiments on duplex models formed by delaying the excitation
of one “muscle” relative to the other have confirmed the effect of asynchronism
on the pattern of load redistribution in each of the duplex “muscles”. Moreover,
the mathematical model enables us (in contrast to physiological experiments) to
study the effect of asynchronism in “pure” form. Having obtained an ideal uniform
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Figure 7. Results of numerical experiment for the duplex model. A. changes in the length
of the “muscle” during shortening; B. force developed by the duplex; C. force developed
by the first “muscle” of the duplex; D. force developed by the second “muscle” of the
duplex. Lmax: 2.24 µm/sarcomere, 2.24 µm/sarcomere; F0: 10.2 mN, 8.55 mN; TPF: 185
ms, 235 ms; ∆L: 0.27 µm/sarcomere, 0.34 µm/sarcomere; Vmax: 0.75 µm/s, 0.68 µm/s,
respectively.

duplex, i.e. one in which all the mechanical characteristics of the “muscles” are
identical, it would be possible to investigate the effects attributed to asynchronism
only by changing the time of the delay in excitation between the “muscles”. In
physiological experiments this is practically impossible because of differences in
mechanical characteristics between the muscles.

Fig. 8 shows the results of a numerical experiment on the model of a duplex
formed by delaying the excitation between “identical muscles” by 100 ms. The
administration of a delay in the excitation of the first “muscle” relative to the
other changed the pattern of the redistribution of loads between the “muscles”.
Increased force of the first “muscle” (Fig. 8C) and a decrease in the force of the
second (Fig. 8D) replaced a constant load on the “muscles”.

The results of the numerical experiment were also obtained simulating the
data of physiological ones shown in Fig. 5. The excitation of the first “muscle” was
compared relative to the second one from an initially asynchronous duplex shown
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Figure 8. Results of numerical experiment on the model of a duplex formed by delaying
the excitation of the first “muscle” relative to the second one by 100 ms in a uniform
duplex: A. changes in the length of the “muscle” during shortening; B. force developed
by the duplex; C. force developed by the first “muscle” of the duplex; D. force developed
by the second “muscle” of the duplex.

in Fig. 6. Specifically, that was done to achieve coincidence of the peaks of the
isometric contractions of both “muscles”. The same patterns of the changed time-
course of the muscle force as revealed in Fig. 5 for the physiological experiment
were observed in the numerical one as well.

Mathematical modeling allows us to evaluate changes in the kinetics and the
level of free intracellular calcium in cardiomyocytes. In the model it is also possible
to trace the formation of CaTn complexes (contractile proteins activation process)
in each of the “muscles” in isolation and within a duplex.

Figs. 9 and 10 present the results of a numerical experiment which show that
the connection of “muscles” in a duplex and mechanical interaction between them
result in a change in the time course, in the free calcium content, and in CaTn
complexes in each of the “muscles”. We present an illustration of this statement
for the pairs of “muscles” that are shown in Fig. 6. It can be seen that the first
(weak) “muscle” of the duplex demonstrates a great change in the time course of
the level of free calcium at small afterloads, whereas at large afterloads the kinetics
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                                            time (ms)  

Figure 9. Time course of free intracellular Ca2+: A. for the first “muscle” contracting
in isolation; B. for the same ”muscle” within a duplex; C. for the second “muscle” con-
tracting in isolation; D. for the second “muscle” within a duplex. The curves are arranged
from top to bottom in the increasing order of afterloads (0.1F0, 0.3F0, 0.5F0 and F0).

of the free calcium practically does not change. At the same time, in the second
(stronger) “muscle” the time course of the level of free calcium is observed to
change at all afterloads. In the same way, the time course of activation is different
in the second “muscle” for all afterloads whereas in the first “muscle” differences
are evident only at small afterloads.

Discussion

Mechanical inhomogeneity of the myocardium is a well-established phenomenon.
However, the mechanical laws which determine the contribution of mechanical in-
homogeneity to the pumping and contractile function of the heart remain unclear.
Study of this phenomenon in an intact heart is a complex problem: mechanical in-
teraction between various parts of the heart is influenced by its geometry, specific
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Figure 10. Changes in the con-
centration of Ca2+-troponin com-
plexes with time: A. for the first
“muscle” contracting in isolation;
B. for the same “muscle” within
a duplex; C. for the second “mus-
cle” contracting in isolation; D.
for the second “muscle” within a
duplex. The curves are arranged
from top to bottom in the increas-
ing order of afterloads (0.1F0,
0.3F0, 0.5F0 and F0).

structure of muscle fibers in the heart chamber walls and neurohumoral effects.
In order to gain a better understanding of this complex phenomenon, mechani-
cal interactions between the contractile elements of myocardial tissue have to be
separated from such factors.

An elementary, mechanically non-uniform system representing myocardial tis-
sue should consist of two mechanically different elements connected in series or in
parallel. This non-uniform system should provide information about the individual
mechanical characteristics of each of the elements in the system, how they are mod-
ified when combined in a non-uniform system, and how each influences the system
as a whole.

A muscle duplex was first studied by Tyberg et al. Unlike us, these authors
focused on muscles connected in series rather than in parallel. In particular, they
used papillary muscles excised from cat right ventricle. Both the duplex and one of
its muscles (muscle I) in isolation were exposed to a series of after-loaded contrac-
tions. Force-velocity relationships were established for both the duplex and muscle
I by plotting peak velocity of duplex (or muscle) shortening under each afterload
vs. this afterload value. Then they assessed force-velocity relationship for the other
muscle (II) of the duplex subtracting corresponding relationship of muscle I from
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that of the whole duplex. During the experiments one of the muscles was exposed
to various local influences (e.g. hypoxia or/and different delays of the muscle’s exci-
tation). It was a pioneering work showing experimentally how either inhomogeneity
of a duplex may affect its mechanical function.

However, this approach is actually not appropriate for clarification of the real
effect of the mechanical interaction on the behavior of the duplex elements as
the above assessment of the force-velocity relationship of muscle II was incorrect.
First, the authors did not take into account length redistribution between the
muscles (i.e. just the interaction) during isometric phase of contraction before the
isotonic one. This interaction brought muscle I to have a different length at the
beginning of isotonic shortening as compared to its isolated contraction under the
same afterload, and thus changed both the time of the peak velocity of the muscle’s
shortening and the value of this peak as such. Therefore, calculating force-velocity
relationship of muscle II within the duplex, the authors subtracted non-actual
values of peak shortening velocities of the first muscle. Second, the procedure of
subtraction was incorrect by itself. Indeed, series connection could not synchronize
time to peak shortening velocity in both muscles (unlike the parallel connection),
i.e. these peaks were attained by each muscle and by the whole duplex at different
moments.

Unlike this approach the method proposed here allows us to account for real
contribution of interaction between duplex elements, because we record mechanical
characteristics of two muscles (force-velocity and length-force included) when they
contract both in isolation and within the duplex.

Wiegner et al. (1978) simulated a duplex consisting of a hypoxic and a nor-
mal myocardium connected in series. First the computer memorised the isotonic
contractions of the muscle under normal conditions. This muscle was then sub-
jected to hypoxia and was made to contract under load applied by the computer
which remembered the isotonic contractions of the normal muscle. In this case, ob-
viously, there was no feedback between the normal and the hypoxic muscle which
constitutes the essence of the interaction between inhomogeneous elements in the
myocardium.

We believe that our experimental methods utilizing muscle duplexes and their
mathematical modeling provides insights with reference to several basic aspects of
the complex myocardial systems at the tissue level. A redistribution of tensions,
which sometimes may be very complicated (polyphasic), takes place in the elements
of an elementary non-uniform myocardial system (a duplex with muscles connected
in parallel) at the tissue level when it is shortened under a constant load; this
complex redistribution depends on the degree of difference between the mechanical
characteristics of the system elements and on the afterload on the duplex. For given
end-systolic lengths and tensions the elements of the duplex may fail to develop
end-systolic tensions and the timing of the onset of isometric relaxation in the
duplex elements may not coincide with the beginning of the isometric relaxation
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phase of the duplex. Asynchronism in the excitation of the elements in a duplex
has a substantial effect on the redistribution of tensions in them, which critically
depends on the excitation sequence. Mathematical modeling demonstrates that
mechanical inhomogeneity can cause a significant effect on the Ca2+ transient, the
level and the time course of CaTn complex formation in the cells of the elements
of a non-uniform myocardial system. Moreover, an oppositely directed activation
of the thin filament by Ca2+ in the elements of a duplex has been found in the
model: an increase in one element is accompanied by a decrease in the other.

Thus, the principal outcome of this work is experimental evidence that in a
non-uniform myocardial system (duplex) with muscle elements connected in paral-
lel, contraction of the duplex under a constant load produces, as the main event, a
redistribution of mechanical tensions in the elements depending first and foremost
on magnitude and character of asynchronism.

This redistribution of tensions within the elements of a non-uniform myocardial
system is important because it can influence the fundamental mechanical charac-
teristics of the individual elements. Mechanical characteristics of the myocardium
such as length-force (Brady 1967), force-velocity (Edman 1977) and end-systolic
length-relaxation time relationships (Brutsaert and Sys 1989) are directly depen-
dent on mechanical conditions under which these characteristics are recorded. Thus,
the slope of the length-force relationship is steeper during the isotonic protocol as
compared with the isometric one (Brady 1967). The steepness of the force-velocity
relationship depends on whether it is recorded with reference to afterload con-
tractions or by the method of fast release (Edman 1977). For the same level of
mechanical tension the time constant of isometric relaxation is greater than one
obtained for the isometric phase following an isotonic contraction. Moreover, the
isometric phase of isotonic relaxation varies depending on whether the load on
the muscle is altered during the early or the late phase of isotonic contraction
(Brutsaert and Sys 1989).

All of the mechanical phenomena demonstrated by in vitro experimentation
support the idea that Ca2+ activation of the thin filament depends on the me-
chanical conditions of the myocardium (Allen and Kentish 1985). For example,
the time course of the Ca2+ transient differs for isometric and isotonic contrac-
tions (Housmans et al. 1983). These results are supported by mathematical models
(Panerai 1980; Izakov et al. 1991; Peterson et al. 1991; Landesberd and Sideman
1994) explaining a wide range of mechanical phenomena in the myocardium on
the basis of a close feedback between mechanical conditions of myocardial con-
traction and the activation of contractile proteins by Ca2+. Our mathematical
model (which includes feedback control) was able to reproduce experimental data
successfully. The results of numerical modeling show that one of major mech-
anisms which underlie the influences of mechanical inhomogeneity on the con-
tractile function of the myocardium is the change in the processes of activation
of the thin filaments. The model provides evidence of a compensatory charac-
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ter of these changes since these changes in the elements are opposite in charac-
ter.

For the duplex as a whole these changes are compensating in character (Mar-
khasin et al. 1997a) though, in general, compensation is partial only. For the duplex
as a whole any inhomogeneity manifests itself as either a negative or a positive in-
otropic effect. The force potential of the duplex established by the dynamic length-
force relationship is not an additive function of the force potentials of its interacting
elements. This conclusion is valid for both parallel and serial connections of the
elements. In the former, however, the main factor of non-additivity is the redis-
tribution of tensions in the elements of the duplex, while in the latter it is the
redistribution of length (Markhasin et al. 1997a).

In addition to changes in thin filament activation during an interaction, numer-
ical analysis allowed us to find other mechanisms responsible for the experimentally
observed effects. At certain relative afterloads on the elements within a duplex their
end-systolic lengths and the time to achive these lengths differ from those recorded
when the elements contracted individually. Thus, when the elements are interacting
within a duplex, the end-systolic length and force are achieved at different degrees
of overlap between the thick and thin filaments and at different levels of Ca2+

activation than when those elements contract in isolation.
Our experiments and numerical tests revealed that the main determinant of

myocardial inhomogeneity is asynchrony. Asynchrony can manifest itself either as
a different time course of contractions in the simultaneously excited elements of
a non-uniform system (Figs. 2, 3, 4) or as different time delays in the excitation
of uniform elements relative to each other, or as a combination of these events
(Fig. 5). An important property of asynchrony as established in this work is the
non-commutativity of its influence so that the redistribution of tensions in the
elements of a contracting duplex critically depends on the excitation sequence.

Based on the present results and on the well-known close relationship between
mechanical conditions of myocardium contraction and the process of Ca2+ activa-
tion of contractile proteins, we suggest the following general hypothesis: because
mechanical interaction between non-uniform elements of the myocardium perma-
nently changes mechanical conditions for each element, mechanical inhomogeneity
should produce a substantial effect on the ino-, lusi- and ergotropic functions of
cardiac muscle. This, however, is a subject for another study.

Our model of a parallel muscle duplex also simulates an interaction between
the parallel layers of the cardiac muscle wall. In a non-uniform duplex, one of the
muscles is weaker. As it has been shown, a shortening under a constant load results
in a redistribution of tensions in the elements of the duplex whereby the larger
share of the total load falls on the stronger muscle. Such a situation is probable
in pathologic states, such as myocardial ischemia. The weaker (conventionally is-
chemic) layer becomes unloaded, which may contribute to its survival. The stronger
(conventionally normal) layer is overloaded and clearly the energy status of this
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layer critically depends on the conditions of blood circulation. If microcirculation
in this layer is normal and the oxygen supply is adequate to the work being done,
the cumulative effect of the interaction between the two layers should be positive,
facilitating the survival of the cardiac muscle. If there is an insufficient supply of
oxygen to the overstrained layer, the ischemic zone may expand. It is clear that the
final outcome of interaction between the affected and normal layers corresponds to
a dynamic balance between the extent of damage and the microcirculatory reserve.

Landesberg et al. (1996) made an attempt, using a mathematical model for a
duplex with its elements connected in parallel, to clarify the mechanism underly-
ing mosaic damage to cardiomyocytes (i.e. the presence of normal cells alongside
damaged ones) in the case of subendocardial infarction in the myocardium. It was
shown that during the interaction between the ischemic subendocardial layer of
the myocardium and the normal subepicardial one, the normal layer accelerates
the reduction of the ischemic layer and leads to a decrease in its oxygen demand.
The following dependence was also found out: the smaller the surviving area size
the higher the acceleration effect.

The oppositely directed redistribution of tensions in the parallel interacting
elements of the duplex and variously directed activation of the thin filament indi-
cate that non-uniform myocardial systems compensate inhomogeneity effects. Thus,
data and their analysis with the help of a mathematical model show that, (1), it is
not enough to establish the fact of segmental inhomogeneity in the heart chamber
walls. Knowledge is required of the mechanical characteristics of each of the seg-
ments and their local perfusion, (2), in pathologic states it is important to estimate
not only the global pumping and contractile functions of the heart but also the lo-
cal mechanical status of the segments: in view of the compensatory character of
inhomogeneity effects the global function can change but slightly whereas locally
a given segment can become a source of damage.
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Appendix 1

Mathematical model for muscle duplexes

Parallel muscle duplexes are simulated using the basic model of a single fiber, i.e.
a system of equations describing individually each of the elements combined in a
duplex. In so doing each of the elements is characterized by its own set of values
for the parameters of the model, while their interaction is given by determining
relationships added to the main equations describing the properties of interaction
between the elements.

For a parallel connection the relationships added are given by:
(i) L1 = L2 = constant for the isometric contraction protocol
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(ii) L1 = L2, P1 + P2 = D = constant for the isotonic contraction protocol,

where P1, L1 are the tensions and the lengths of the first muscle, P2, L2 – those
of the second muscle. D is the afterload. In a similar way, the model describes
physiological contraction for a duplex.

Appendix 2

The equations of the mathematical model for contractions of a homogeneous fiber

λ · p(l̇1) ·Aµ1 · n2 · n1(l1) · (l1 + S0) = β1 · [exp(α1 · (l2 − l1))− 1] (1)

Ȧ1 = c1 · Caf · (1−A1)− c20 · exp(−qk · A1) · Π(n1(l1) · n2) ·A1 (2)

ṅ2 = qn(l̇1) · [n̄2 ·G
∗(l̇1)− n2] (3)

Ċaf = −Ȧ1 − Ḃ − r(Caf ) · Caf (4)

Ḃ = bon · (Bs −B) · Caf − boff ·B (5)

The phase variables of the set of equations have the following meaning: l1 is
the deviation in the length of the contractile element from the length at rest; A1 is
the average concentration of Ca2+-troponin complexes in the overlap between the
thin and thick filaments; n2 is the average probability that a myosin cross bridge
will attach to a free actin site it “finds” on the thin filament; l2 is the deviation
in the length of the muscle from the length at rest. Caf is the concentration of
free intracellular calcium. For t ≤ td (td is the time to peak calcium transient)
Caf is given by the equality Caf = Ca(t), where Ca(t) is an explicit function. But
for t ≥ td Caf is described by differential equation (4) with the initial condition:
Caf(td) = Ca(td). B is the concentration of Ca2+-buffer complexes. Bs is the
capacity of the buffer expressed, like all the other concentrations, in fractions of
the concentration of TnC in the cell. Also, the equations contain the following
dependencies, in the model given in an explicit form:

p(l̇1), Ca(t), n1(l1), Π(n1(l1) · n2), qn(l̇1), G∗(l̇1), r(Caf)

where p is the average force developed by a cross bridge (p is expressed in relative
units, it equals 1 for l̇1 = 0); n1 is the average probability that a cross bridge
will “find” a free actin site on the thin filament. For our detailed substantiation of
the length dependence of probability n1 see Izakov et al. 1991. In addition to n1,
length-dependence is displayed by quantity Π(n1(l1) ·n2) as well, which is the vari-
able part of the rate constant of Ca2+-troponin complexes disintegration specifying
the first type of cooperative dependence of this constant on the concentration of
cross bridges attached to the filament. qn = qn(l̇1) and G∗ = G∗(l̇1) are functional
dependencies relating the kinetics of change in quantity n2 to the shortening ve-
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locity of the contractile element. n̄2 is the model parameter meaning an average
probability that a cross bridge will find a free actin site on the thin filament in
specific conditions of the absolute isometry, i.e. when sarcomeres have a perma-
nently constant length. Term r(Caf) ·Caf in equation (4) stands for the uptake of
free intracellular Ca2+ by the sarcoplasmic reticulum (SR). With the help of term
r(Caf) we describe the uptake function of the SR. In particular, it is used to set
the negative feedback: the higher the concentration of intracellular free Ca2+, the
stronger the repression of the pump taking up this Ca2+ in SR. Hence, function
r(Caf) should meet the requirement of strong convergence to zero with increasing
argument Caf . In the model, therefore, we set: r(Caf ) = rCa · exp(−qCa · Caf),
where rCa and qCa are parameters of the model.

The quantities not mentioned in the above list but appearing in the equa-
tions are constant parameters of the model. We omit the deduction of the above
equations as well as formulas specifying the dependencies in an explicit form:
p(l̇1), Ca(t), n1(l1),Π(n1(l̇1) · n2), G∗(l̇1) and qn(l1). Note only that function p(l̇1)
is reversible in an explicit form; this quality makes it possible to solve the first
equation of the set for l̇1. This leads to the Cauchy form of the equations (allow-
ing for easily established initial values) for phase variables l1, A1, n2. The force
developed by the contractile element is given in the model by the formula: PCE =
λ · p(l̇1) ·Aµ1 · n2 · n1(l1) · (l1 + S0) The first equation of the above set follows from
equality: PCE = PSE, where PSE = β1 · [exp(α1 · (l2 − l1)) − 1] is the force of the
series elastic element. The force of the muscle is equal to PCE +PPE, where PPE is
the force of the parallel elastic element given by: PPE = β2 · [exp(α2 · l2)− 1].

We have already emphasized that the main feature of the previous model
was feedback in the kinetics of Ca2+-troponin complexes described by the second
equation of the model. This feedback implemented in two types of cooperativity
in contractile proteins is reflected in the constant for the disintegration of Ca2+-
troponin complexes: c20 · exp(−qk · A1) · Π(n1(l1) · n2). The first multiplier c20 is
a parameter of the model. Term Π(n1(l1) · n2) stands for cooperativity of the first
type: the dependence of the kinetics of Ca2+-troponin complexes along the thin
filament. Term exp(−qk ·A1) sets cooperativity of the second type: interaction be-
tween Ca2+-troponin complexes along the thin filament leading to a slow-down in
their dissociation. This other type of cooperativity (namely the so called end-to-end
cooperativity of CaTn) is also used in the model (see Aµ (µ ≥ 1) in both equa-
tion (1) and above-given formula for PCE). We justified in detail this cooperativity
elsewhere (Katsnelson and Markhasin 1996). In short its sense is as follows. Physi-
ologically the variant of µ > 1 means direct interrelation between calcium-troponin
complexes (not through kinetic constants) enhancing the ability of each of them to
derepress sites on the actin and, hence, increasing the contribution of each of them
to the development of muscle tension. Thus, the number of derepressed actin sites
turns out to be proportional to a degree of A (where A is [TnC]) rather then to A
as itself.
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Appendix 3

Basic parameters of the mathematical model for a homogeneous fiber

The set of the parameter values we used in our numerical experiments are
taken from the published variant of our homogeneous muscle model (Izakov et al.
1991). It is as follows:

α1 = 14.6 µm−1 λ = 20 g·mm−2 ·µm−1 qCa = 50
β1 = 0.56 g·mm−2 S0 = 1.14 µm bon = 2.0 ms−1

α2 = 14.6 µm−1 td = 85 ms boff = 0.14 ms−1

c1 = 1.6 ms−1 a = 0.25 Bs = 0.4
β2 = 0.00012 g·mm−2 rCa = 0.5 µ = 1.7
c20 = 0.6 ms−1 n̄2 = 0.87

All concentrations appearing in the model equations are defined in fractions
of troponin (TnC) concentration, where [TnC] = 7.0 × 10−5 mol/l. The parameter
values for “muscle 1” were used for control. “Muscle 2” was obtained by altering
some parameters of “muscle 1” as follows: β1 = 1.6 g·mm−2; λ = 48 g·mm−2 ·µm−1;
td = 40 ms; c1 = 0.9 ms−1. “Muscle 3” was obtained from “muscle 1” by setting
the following: β1 = 0.33 g·mm−2; λ = 120 g·mm−2 ·µm−1; µ = 3.
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