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Neural Network Comparing Two Rate-Encoded Inputs 
Entering in Parallel 

J . PAVLÁSEK AND T . H R O M Á D K A 

Institute of Normal and Pathological Physiology, 
Slovak Academy of Sciences, Bratislava, Slovakia 

A b s t r a c t . Presented computational model of a neural network is able to compare 
two regular input frequencies. The comparison is based on detection of inter-spike 
interval differences of the two frequencies. This detection is continuous and the 
network dynamically changes its output according to the changes in the input fre­
quencies. The entire network is composed of biologically plausible par t s . A combi­
nation of such simple comparators might be involved in the information processing 
in the central nervous system. 
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In troduc t ion 

The sensory system provides an organism with a continuous representation of in­
ternal and external environments. The different types of stimuli are transformed 
into a change of a membrane potential of peripheral receptors and neurons tha t -
when exceeding the threshold, leads to generation of action potentials (spikes). The 
spike trains then bring the information about the sensory stimuli into the CNS. 

Thus the physical parameters of stimuli are encoded into spike trains which are 
considered to be binary strings representing biologically significant symbols within 
the particular context being investigated. The minimum set of symbols capable 
of representing all of the biologically significant information about the stimulus 
defines a neural code (Theunissen and Miller 1995). 

Many encoding schemes have been considered by neurobiologists so far and 
the process of encoding is still not completely understood. However, it is generally 
accepted tha t , when encoding in a temporal domain, the two main types of neural 
codes are temporal code and rate code (Theunissen and Miller 1995; Gerstner et 
al. 1997). In the temporal encoding scheme, the relevant information is correlated 
with the timing of the spikes within an encoding window (Richmond et al. 1987, 
1990; McClurkin et al. 1991; Pavlásek 1999). In the (mean) rate encoding scheme, 
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the relevant information encoded about the stimulus is correlated only with the 
number of elicited spikes within the (temporal) encoding window (Konishi 1991; 
Hsiao et al. 1993). 

The processing of the rate encoded inputs in central nervous system may reflect 
two different situations and each of them requires different mechanisms of rate 
"decoding". 

One situation occurs when the rate encoded inputs enter the network sequen­
tially. Such situation (stimulus 1-pause-stimulus 2) dealing with vibratory tactile 
stimuli was considered in Mountcastle et al. (1990); Hernandez et al. (2000). The 
detection of these stimuli and differentiation of their frequencies requires "decod­
ing" mechanisms capable of discerning between the spike trains transmitted se­
quentially in the same information channel and the memory mechanisms storing 
the information about the first and the second stimuli. 

Another situation is suggested when the continuous comparison of frequencies 
incoming in parallel from various places of activated receptor sheet is necessary for 
sensory processing. To process this type of neural code, mechanisms able to compute 
differences in firing rate (frequencies) in a sensory channel might be assumed (Hsiao 
et al. 1993). 

The specific nature of the rate encoding scheme has significant implications 
for biologically relevant "decoding" mechanisms. The "decoding" scheme may use 
the mechanism of spatio-temporal summation based on convergence. However, for 
lower frequencies, taking into account the duration of postsynaptic potentials, the 
spatio-temporal summation cannot be sufficient. 

In this paper we focus on the problem of comparing two rate encoded inputs 
entering simultaneously the neural network model. The network proposed must 
be able to compare the simultaneously incoming frequencies and to recognize the 
difference between them. The input frequencies are supposed to be within the range 
of 20-100 Hz, which is in the frequency range used for information transmission 
in the central nervous system (Willis and Coggeshall 1991); i.e. the network must 
be also able to process the spike trains with interspike intervals 10-50 ms. The 
difference in the input frequencies, if any, should be signalled in spiking activity 
at the output. Both outputs should remain silent if the input frequencies are the 
same. 

Methods 

The computer model JASTAP obeys the principles concerning the physiology of a 
biologically realistic neuron with chemical transmission of information. Details of 
the model have been reported elsewhere (Jančo et al. 1994). Herein, we only give 
a brief account of the essential properties used in the simulations shown in this 
paper. 

The basic element of the network is a model neuron (neuroid) behaving as an 
integrate-and-fire element. It is described by: 
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1. Instantaneous membrane potential (Mp). M p is a dimensionless quantity within 
the range (—1,1). 

2. Membrane potential determined as the sum of postsynaptic potentials {Psp) 
limited by the nonlinear function 

Mp(t) = (2/IT) arctan ( ^ Psp{t)) (1) 

3. A threshold (Th) from the interval (0,1). 
4. The frequency of spikes (Sp) is restricted by the absolute refractory period. 

This is managed by setting minimum (Imn) and maximum (Imx) interspike 
intervals. The actual interspike interval (7a) is determined as 

h = Imn + ( I m * - Imn)(2/v) arctan((Mp - Th)/{\ - Mp)) (2) 

The standard value for Imn was 1 ms, and Imx ranged from 2 ms to 10 ms. 
The relative value of T h was set to 0.5 for all neuroids. 

5. Behaviour in terms of phasicity or tonicity (these functions were not activated 
in the present work). Every neuroid can have 8 synaptic inputs but only a 
single output. The program treats the synapse as a part of the neuroid. The 
output can be connected to one or several synapses in the network of neuroids. 
A synapse is characterized by: 

a) The input connected to it. 
b) The shape of a Psp prototype, which is evoked by Sp arriving at this 

synapse (the particular waveform is selected from a set of prototype Psp 
shapes stored in a buffer of Psp waveforms). The Psp prototype is de­
scribed by 

Psp(t) = fc(l - exp(-í/ŕ 1)) 2exp(-2í/Í2) (3) 
The waveform simulates whether the synapse in question is located on the 
soma or on the dendritic tree (the time-course and the attenuation of its 
amplitude). In this presentation uniform Psp time-courses (Fig. 2B) were 
used, one for excitatory and another for inhibitory Psp. Experimental 
data are best simulated with parameters t\ = 0.3 ms and Í2 = 2.7 ms. 

c) The latency (time delay) of the synaptic transmission and/or axonal con­
duction. 

d) The synaptic weight (Sw) has its value from the interval (—1,1). Sw 
simulates effectiveness of a synaptic input (a synchronously activated set 
of axons of the same type or a cluster of the terminal branches of an 
axon). 

e) Developmental changes which determine instantaneous, effective Sw. The­
se mechanisms representing plastic activity-induced alterations were not 
activated in presented simulations. 

The computer program JASTAP has been written in C + + language. The pro­
gram can define a network by simple command language and simulate its activity in 
discrete time intervals (0.5 ms steps). Samples of simulated activity are presented 
in the form of intracellular recording with a microelectrode, or as a raster map of 
the spike potentials. 
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R e s u l t s 

Notation and conventions 

In simulation experiments (see below) we used regular input frequencies F ^ 1 ) , F^ 
(Fig 1A) of 20-100 Hz To describe the input frequencies we used the following 
notation conventions (Fig 1B,C) The sequence of spikes can be considered t o be 
a t r a m of discrete impulses {SPl} Because we assumed regular input frequencies 

the interspike interval lengths were constant inside a given time window - it was 
possible to describe each t r a m of impulses as SPk = SPo + kl, where SPo is the 
spike arrival t ime of the first spike (in ms), I is the inter-spike interval (in ms), 
and k = 1,2,3,4, We used the superscripts ^ ' and ^ to distinguish between 
the two input spike trains entering via INP1 or INP2 respectively 

To describe the relations between two input frequencies we denoted t h e differ­
ence between the first spike arrival times by D = SPQ — SPQ and the inter-spike 
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Figure 1. Definition of the problem A. A proposed relation among input and output 
frequencies The input frequencies (F^\ F ( 2 ) ) enter the network (Netw) via INP1 or 
INP2 respectively If the frequencies are equal the outputs are silent if F( ' > F 7(2) 

( F ( 2 ) > Fw) then OUTP1 (OUTP2) is active, the output frequency is denoted by 
p(3) ( i^ 4 )) B. A schematic description of the spike tram where J denotes the inter­
spike interval length and SPi denote the time of spike occurrence C. Relations between 
F{1) (vertical bars) and F ( 2 ) (triangles) SP^} is the first spike of F{1\ D denotes the 
difference in the first spike arrival times of F ( 1 ) and F ( 2 ) a) The two input frequencies are 
unequal The situation where F(1) > F ( 2 ) ( i^ 1 ' < 1^) is shown The frequencies can start 
either simultaneously (vertical lines vs empty triangles) or non-simultaneously (vertical 
lines vs black triangles), b) The two input frequencies are equal ( F ( 1 ) = F ( 2 i ) Again, 
the frequencies can start either simultaneously (empty triangles) or non-simultaneously 
(black triangles) 
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interval difference between two input frequencies by Al = \I^ — 1 ^ \ . Full descrip­
tion of the input spike trains is then given by SPQ (the first spike arrival time 
of the first input) or SPQ , difference D and the lengths of inter-spike intervals 
i"'1' and r2\ To simplify the morphological and functional description (see below) 
of the network we use the terms network channel and side of the network. Two 
parallel network channels (sides of the network) are involved in processing of dif­
ferent inputs; F ' 1 ' channel includes neuroids nn.0,1,2,3,9, F*2 ' channel includes 
nn.4,5,6,7,10 (Fig. 2A). The n.8 is shared by both inputs and channels. 

The approach to problem solution 

The main principle underlying the presented solution is a continuous concurrency 
of the opposite sides of the network in creation of a time window. The time window 
is a time period during which one side of the network is ready to create an output 
and it is, in fact, an inter-spike interval of the corresponding input frequency. 

If two spikes enter the network simultaneously via both inputs (INPl and 
INP2) the propagated activity in both channels - except the output neuroids - is 
stopped. 

Non-simultaneous spikes entering the network inhibit the activity of the op­
posite side of the network ("capture" the time window from the opposite side) 
and start a reverberatory activity in oscillatory circuit ("create" the time window) 
persisting during the time window duration. 

While "holding" the time window the particular side of the network is ready 
to create an output activity. If another spike enters the network via the same input 
during this period, the corresponding output neuroid generates propagated signal. 
Thus an output is generated if two successive spikes of one input stream enter the 
network between two successive spikes of the other stream. 

For example, let us assume that F*1) is higher than F ' 2 ' (Fig. ICa). This 
means that 1^ is shorter than I^2\ In this case, after some time, two successive 
spikes of F^1 ' must necessarily enter the network between two successive spikes of 
F^2 ' and the F*1) channel "captures" the time window. Consequently the inputs 
(monosynaptic, polysynaptic) of output neuroid (n.3 in this case) are activated and 
the output neuroid generates a spike. 

This is the situation shown in Fig. ICa. If the black triangles show the position 
of F ' 2 ' spikes then the second and third spikes of F ' 1 ' are inside the first inter-spike 
interval of F*2). Consequently - after arrival of the third F*1 ' spike - the output 
neuroid 3 generates a propagated signal. 

The model network 

Network connectivity 

The model network (Fig. 2A) consists of 11 neuroids. Two inputs (INPl and 
INP2) diverge into three branches each, establishing monosynaptic connections 
with: a) n.8.; b) output neuroids 3 (INPl) or 7 (INP2); and c) input neuroids 0 
(INPl) or n.4 (INP2). 
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Convergent inputs INPl, INP2 making connections with n 8 form subthresh­
old excitatory synapses The divergent output connections of n 8 form inhibitory 
synapses with the first three neuroids of each channel (nn 0 ,1 ,2 from one side of 
the network and n n 4 ,5 ,6 from the other one) 

The monosynaptic connections between the inputs and the appropriate output 
neuroids (INPl — n 3, INP2 — n 7) have excitatory subthreshold influence 
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Figure 2. The model neural network A. The model network consisting of 11 model neu­
rons (neuroids 0-10), two inputs (INPl, INP2) and two outputs [OUTP1, OUTP2) 
Connections marked by bars (dots) are excitatory (inhibitory), crosses indicate subthresh­
old excitatory influence, d indicates a delay hne B . Time courses of postsynaptic poten­
tials used in the model neuron Sub-threshold and supra-threshold (with the resulting 
spike SP) post-synaptic potentials are shown The dash-dot-dot horizontal line repre­
sents the resting membrane potential, the dotted line represents the threshold (th) The 
start of stimulus which elicited the postsynaptic potentials is marked by the arrow C. 
Mam functional blocks of the network All neuroids (0-10) are grouped into 4 functional 
blocks (I~IV) Arrows show the activity flow, connections marked by pluses (minuses) are 
excitatory (inhibitory), encircled pluses indicate subthreshold excitatory influence 
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Polysynaptic pathway in each network channel is composed of four neuroids 
connected in series (nn.O — 1 — 2 — 3 or nn.4 — 5 — 6 — 7). The efferent connection 
of input neuroid (n.O/n.4) diverges and makes synaptic contact with an inhibitory 
neuroid (n.lO/n.9) from the other side of the network. These connections are the 
only functional contacts between the channels. The diverging outputs of inhibitory 
neuroids (n.lO/n.9) form inhibitory synapses with nn.5,6/nn.l ,2. 

Second and third neuroids in each channel (nn.l, 2 and nn.5,6) have reciprocal 
excitatory connections forming a closed loop. Outputs of these neuroids converge on 
the output neuroid (n.3/n.7) and form subthreshold excitatory synapses together 
with monosynaptic subthreshold excitatory influence from INPl or INP2. 

Main functional blocks 

Each input frequency (F^1' or F^) (Fig. 1A) enters the network via its own input 
(INPl or INP2) (Fig. 2A). The activity of OUT PI and OUTP2 depends on the 
relation between F^ and F*2 ' . If compared frequencies are the same - whether 
simultaneous (D = 0 ms) or not (D ^ 0 ms) (Fig. lCb) - both outputs remain 
silent. If F^1 ' and F ( 2 ' are unequal, only the output of the channel processing 
higher input frequency is activated. 

The neuroids are grouped into 4 functionally different blocks (Fig. 2C). 
1. The first (input) block (I) has two main functions. Neuroid 8 serves as a 

coincidence detector and detects the simultaneously entering spikes. If such 
spikes are detected n.8 blocks the input at the level of nn.O, 4 and resets the 
oscillatory circuits [n.l — n.2] and [n.5 — n.6]. Neuroids 0 and 4 activate the 
oscillatory circuits ([n.l - n.2] or [n.5 - n.6]) and the inhibitory block ([n.9; 
n.10]). 

2. The oscillatory circuits (II) [n.l — n.2] and [n.5 — n.6] serve as dynamic mem­
ories. They receive the inputs from previous (input) block (I, nn.O, 4). Each 
spike arriving from the input block starts a reverberatory activity in appropri­
ate circuit which means that the channel is currently holding the time window. 
This activity continuously stimulates (sub-threshold intensity) the output neu­
roid (n.3 or n.7) and prepares it for generation of output signal. 

3. Once activated, the reverberatory activity can be stopped only from the op­
posite side of the network via the activity of inhibitory block (III) [n.9; n.10] 
(memory reset). 

4. The output blocks (IV) [3] and [7] receive two inputs. 
a) Activity transmitted monosynaptically from the corresponding input 

(INPl or INP2). 
b) Activity provided by the corresponding dynamic memory ([n.l — n.2] or 

[n.5 — n.6]). 
Both inputs excite the output neuroids with subthreshold intensity, thus the 

suprathreshold activation of output neuroid (n.3 or n.7) requires coactivation of 
both inputs. 
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Activity flow 

Every spike entering the network (Fig 2A,C) is a) transmitted directly to the 
corresponding output block (IV) and b) processed in the input block (I) 

In the input block the spikes are transmitted to a coincidence detector (n 8) 
which eliminates all spikes entering the network simultaneously If simultaneous 
spikes are detected, n 8 inhibits the propagated activity in the network ("resets" 
the network) 

Non-simultaneous spikes transmitted monosynaptically to n 0 (INPl) and n 4 
(INP2) evoke reverberatory activity in dynamic memories [n 1 — n 2] or [n 5 — n 6] 
respectively and activate the appropriate neuroid in the inhibitory block (n 10 
or n 9 respectively) These inhibitory neuroids in turn inhibit the activity of the 
opposite side of the network ("capturing" the time window) 

The reverberating activity in [n 1 — n 2] or [n 5 — n 6] continuously stimulates 
the corresponding output neuroid with subthreshold intensity If this continuous 
subthreshold stimulation meets the spike transmitted directly from the input, the 
corresponding output neuroid is activated 

Simulation experiments 

The same input frequencies, starting simultaneously 

The situation can be described with D = 0 m s (SP0
(1) = SPf}2)) and 7*1' = 7<2> 

(Fig lCb) 
The simulation results are demonstrated m Fig 3 in the form of a raster 

map The considered part of simulation started at 360 ms and ended at 600 ms 
of simulation time The input frequencies (records i l , i2) were F(1) = F^2 ' ~ 66 
Hz (1^ = 1^ = 15 ms) The network activity was governed by the coincidence 
detector (n 8) activated at the start of this part of simulation (360 ms), which then 
gradually inhibited the dynamic memories [n 1 — n 2], [n 5 — n 6] (360-400 ms) and 
finally (from 400 ms) blocked them completely 

The output neuroids (nn 3,7) continuously received subthreshold excitatory 
influence (not shown) from INPl, INP2 but there was no output from the network 
since the dynamic memories were inactive 

The same input frequencies, starting non-simultaneously 

If two same input frequencies differ in the arrival time of the first spike and their 
mter-spike intervals are equal, the situation can be described with D / 0 ms 
(5P0

(1) # SP^) and /W = I™ (Fig lCb) 
In this case the opposite sides of the network alternate in mutual inhibition 

The situation is illustrated in Fig 3 (considered part of simulation started at 5 ms 
and ended at 220 ms of simulation time when F<2> was switched off) The input 
frequencies (records il, i2) were F*1 ' = F^2 ' ~ 66 Hz (1^ = 1^ = 15 ms) with 
D = 7 5 ms 

The inhibitory activity of n 10 (mediated by path IN PI —n 0 — n 10 — nn 5,6) 
alternated with the inhibitory activity of n 9 (path INP2 — n 4 — n 9 - nn 1,2) The 
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Figure 3. The activity in the network (Fig 2A) during processing of equal frequencies 
The raster maps of both inputs (»1, i2) with frequencies F ( 1 ) , F^2) and all neuroids (0-
10) are shown Simulation time was 600 ms The values used in the simulation were 
j d ) _ j(2) _ 1 5 m g ^ ( i ) _ F(2) ^ 6 6 H z ^ A t t h e beginning of the simulation the start 

of F ( 2 ) was slightly delayed (D = 7 5 ms) (black triangles on the left side) After 200 ms 
of simulation time F ( 2 ) was switched off At 360 ms of simulation time F ( 2 ) was switched 
on again but this time simultaneously (D = 0 ms) with F ( 1 ) (black triangles on the right) 

stimulation of both output neuroids (n.3/n.7) was continuous but subthreshold (not 
shown); as the dynamic memories were inactive (inhibited by nn.9 ,10) no output 
signals were generated. 

Different input frequencies 

In both previous situations the input frequencies were the same, i.e. 1^ = P2'. 
In general no special values of D, / W and I^ have to be assumed (Fig. 4, Fig. 5, 
Fig. 6, Fig 8). 
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The results of simulation experiment, with different input frequencies (F^ 1 ' ~ 
66 Hz, 1^ = 15 ms and F^ = 50 Hz, 1^ — 20 ms) start ing simultaneously, are 
shown in Figs. 4, 5. Both inputs (records i l , i2) were active from 5 ms till the end 
of simulation time (150 ms). 

The coincidence detecting n.8 detected simultaneous input spikes at 5 ms, 65 
ms, 125 ms (record 8) and stopped the spiking activity in the network until the 
next input spike arrival. It is evident how the activity moved from one side of the 
network to the other one (e.g., nn.9,10) - "capturing the time window". Because 
the input frequency F ' 1 ' was higher than F* 2 ' , the F^ 1 ' channel succeeded, at 35 
ms and 95 ms, in activating of the output neuroid (n.3). 

The dynamics of processing in the model network is shown in Fig. 6A,B. The 
input frequencies were not constant but either one or both of them changed during 
the simulation experiment (empty triangles). 

A simulation in which only one input frequency (F^ entering via INP2) 
changed is shown in Fig. 6A. F^ 1 ' was constant (~ 66 Hz, 1^ = 15 ms) and F^ 
decreased from ~ 33 Hz to 25 Hz (i"*1* from 30 ms to 40 ms) at 315 ms. As F* 1 ' 
was still higher than F* 2 ' the output n.3 was active during the whole simulation; 
the output frequency increased from ~ 33 Hz to ~ 46 Hz and changed its pat tern. 
The output n.7 remained inactive. 

Both inputs were allowed to change in simulation depicted in Fig. 6B. At the 
beginning of simulation F^ and F^2 ) were 100 Hz (7(1) = 10 ms) and ~ 66 Hz 
( j ( 2 ' = 15 ms) respectively. At 315 ms of simulation time F^ 1 ' decreased to 50 Hz 
(7(1> = 20 ms), and at 300 ms of simulation time F<2 ' decreased to 40 Hz (7 ( 2 ) = 
25 ms) (empty triangles). The only active output neuroid was n.3 since F^ was 
still higher than F* 2 ' ; the output frequency decreased from ~ 33 Hz to ~ 10 Hz as 
a result of input frequency change. The output n.7 remained inactive. 

Differences in input frequencies detectable by the model network 

Three situations of processing frequencies with different inter-spike intervals are 

•4 

Figure 4. The activity flow in the model network (Fig. 2A) using simultaneously starting 
(D = 0 ms) input frequencies F ( 1 ) ~ 66 Hz (J (1 ) = 15 ms) and F ( 2 ) = 50 Hz (J (1) = 
20 ms). All records share the same time scale (bottom) - 5-ms divisions, 150 ms the 
whole simulation time. The raster maps i l , i2 (vertical bars mark the occurrence of 
spikes) are records of the two inputs entering the model network. The records below 
the raster maps show the results of simulating the intracellularly recorded post synaptic 
potentials in neuroids 0, 2, 3, 4, 6 and 7 The eight horizontal lines above the simulated 
recordings represent possible synaptic inputs, and the small vertical bars superimposed 
on them indicate spikes arriving at the synaptic ending (active inputs are marked by 
short horizontal bars on the right hand side). The upper (dotted) horizontal lines are 
the threshold levels for spike generation (vertical bars on the simulated recordings). The 
lower (dash-dot-dot) horizontal lines represent resting transmembrane potential. Abscissa, 
simulation time in milliseconds; ordinate, simulation of the transmembrane potential in 
millivolts. 
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Figure 5. The activity flow m the model network (Fig. 2A) For detailed description, 
see Fig. 4. The simulations of intracellular recordings of activity of neuroids 8, 9, 10 are 
shown in the upper part. The raster map in the lower part shows the activity of all 11 
neuroids of the network during the simulation. 
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depicted in Fig. 7. In the first case (part a) /W = 15 ms (F<x> ~ 66 Hz), I(2) = 
17.5 ms (F^2) ~ 57 Hz) which makes the inter-spike interval difference A7 = 2.5 
ms. This difference was detected and the output n.3 generated spiking activity with 
frequency of ~ 10 Hz. 

The inter-spike interval difference of 2 ms (J*1' = 15 ms, F ' 1 ' ~ 66 Hz, 1^ = 
17 ms, F(2 ' ~ 59 Hz) was still detectable (part b) and n.3 was active although the 
output spiking frequency was considerably lower (~ 4 Hz). 

The inter-spike interval difference of 1.5 ms (1^ = 15 ms, F ' 1 ' ~ 66 Hz, 
/(2) = 16.5 ms, F ' 2 ' ~ 60 Hz) was not detected (part c) and n.3 remained silent. 

As the inter-spike intervals of the different input frequencies approached each 
other, the output frequency slowed down; in fact Al = 2 ms was the smallest 
difference detectable by the model network using the input frequencies in the range 
40-70 Hz. 

Changes in output frequency in relation to changes in input frequencies 

To study the relation between the input and output frequencies three types of 
simulation experiments were made. In this section F*3) denotes the (mean) output 
frequency counted after 1000 ms of simulation time. 

In the first case the higher input frequency (F^) was constant (~ 66 Hz; 7*1' = 
15 ms) and the lower one (F*2)) changed from ~ 50 Hz to ~ 16 Hz (7'2) from 20 
ms to 60 ms in 5-ms steps). The results of simulation experiments are summarized 
in Fig 6C. The relation between F^/F^ and inter-spike interval difference Al 
is shown. The results show that - if the higher input frequency is constant - the 
(mean) output frequency (F (3 )) is proportional to A7. This proportionality was 
preserved also when the higher frequency was changing and the lower one was 
constant (not shown). 

In the second case both input frequencies were changing but the inter-spike 
interval difference (A7) remained constant. F*1 ' changed from 100 Hz to 20 Hz 
(7^' from 10 ms to 50 ms in 5 ms steps) and F^2 ' changed from 66 Hz to 18 
Hz (7'2) from 15 ms to 55 ms in 5 ms steps). The results of simulations in which 
A7 = 5 ms are depicted in Fig. 6D. The relation between F^/F^ and 1^ (I{2)) 
was found to be approximately exponential. 

In the third case the ratio 7 ' 1 ' /7 ' 2 ' was constant and F'1) was higher than F^. 
The input frequencies were in the 29-100 Hz range. Seven different 7*1 '/-^2 ' ratios 
were examined: 1/3, 2/5, 1/2, 3/5, 2/3, 3/4 and 4/5. The results of simulations 
in which JÍ 1 ) / /^) ratios were 2/3, 3/4 and 4/5 are shown in Fig. 8B, panels d, e, 
f respectively. F^/F^ was approximately constant in all cases, i.e. the output 
frequency (F '3 ' ) rose with the increasing higher input frequency (F*1)) to keep the 
^(3)^(1) r a t i 0 constant. Moreover, the constant F^/F^ ratio was higher (F^ 
value was closer to F^1') with the decreasing 7*1'/7^2^ ratio (increasing F^/F^ 
ratio). 

All relations among the output and input frequencies mentioned are fits to the 
results of simulations. The occasionally occurring values which did not correspond 
well to these fits (Fig. 6C,D; Fig. 8Bd,e,f) are discussed below. 
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Discuss ion 

The importance of rate code 

The idea that mean firing rates are used for encoding of stimulus parameters was 
first developed by Adrian (1926, 1941) who showed tha t the firing rate of stretch 
receptor in muscle increases as the static force applied to the muscle increases 
Further experimental work confirmed the importance of rate code for information 
processing in the central nervous system (Mountcastle 1957; Mountcastle et al 
1990; Hsiao et al. 1993; Johnson and Hsiao 1994). For example, amplitude and 
phase of sound waves in auditory nerve (barn owl) are rate encoded (Konishi 1991). 

The concept of rate code became a s tandard tool for describing the properties 
of many types of neurons (see, for example Hubel and Wiesel 1959; Girman et al. 
1999; Ramachandran et al. 1999) although it is now subject of debate (see, for 
example Bialek et al. 1991; Rieke et al. 1997) and is considered to be too simple 
for bram activity description (Gerstner 1999). 

• 

Figure 6. Changes in input frequencies during the simulation (A, B) and proposed rela­
tions among the input and output frequencies (C, D) m the model network (Fig 2A) F ( 1 \ 
F ( 2 ) denote the input frequencies, F*3 ' denotes the output frequency, I^\ J^2' denote the 
inter-spike interval lengths, Al is the inter-spike interval difference between F (1^ and F< 2 ) 

(see Notation and conventions for details) A. Simulations of intracellular recordings of 
activity of output neuroids 3, 7 (Fig 2A) are shown Both frequencies started simultane­
ously (black triangles) - F ( 1 ) ~ 66 Hz, I(1) = 15 ms, F ( 2 ) ~ 33 Hz, I{1) = 30 ms - and 
F^2) changed its value to 25 Hz (7^2' = 40 ms) during the simulation (empty triangles) 
As a result, the output of neuroid 3 changed B . Simulations of intracellular recordings 
of activity of output neuroids 3, 7 are shown Both frequencies started simultaneously 
(black triangles) - F ( 1 ) = 100 Hz, 7 (1) = 10 ms, F ( 2 ) ~ 66 Hz, 7(1) = 15 ms - and 
during the simulation F ( 1 ) changed its value to 50 Hz (7 (1) = 20 ms) and F ( 2 ) changed its 
value to 40 Hz (7 (2) = 25 ms) (empty triangles) As a result of this change the output of 
neuroid 3 changed C. Results of simulations in which the higher input frequency (F ( 1 )) 
was constant (~ 66 Hz, 7 (1) = 15 ms) A proposed relation between F ( 3 ) / F ' x ) and A7 is 
shown Crosses mark the results of particular simulations, the black and empty triangles 
correspond to the triangles in part A of this Figure The straight line, showing the pro­
posed relation, is a linear regression fit to the results D . Results of simulations in which 
A7 was constant (Al = 5 ms) A proposed relation between F ( 3 ) / F ( 1 ) and 7 (1 ) is shown 
Note that, since A7 is constant, there is an analogical relation between F^3'/F(1) and 
7'2 ) Crosses mark the results of particular simulations, the black and empty triangles 
correspond to the triangles in part B of this Figure The proposed exponential relation is 
the best fit to the results 
Note F^ is higher in all simulations considered in this Figure, which means that the 
only output frequency is F^3 ' 
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"Reading" the rate code 

The basic idea of rate coding is that most of the relevant information is contained 
in the mean firing rate of the neuron. However, there are at least three different 
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Figure 7. Differences in input frequencies detectable by the model network (Fig 2A) 
The raster maps of the two inputs il, i2 and output neuroids 3, 7 are shown The input 
frequencies started simultaneously The time scale is 600 ms A7 denotes the difference in 
the lengths of inter-spike intervals (A7 = | / ( 1 ) - I{2)\) a) 7 ( 1 ) = 15 ms ( F ( 1 ) ~ 66 Hz), 
7 ( 2 ) = 17 5 ms ( F ( 2 ) ~ 57 Hz), A7 = 2 5 ms, b) 7 ( 1 ) = 15 ms ( F ( 1 ) ~ 66 Hz), 7 ( 2 ) = 17 
ms ( F ( 2 ) ~ 59 Hz), A7 = 2 ms, c) 7 ( 1 ) = 15 ms ( F ( 1 ) ~ 66 Hz), 7 ( 2 ) = 16 5 ms ( F ( 2 ) ~ 
60 Hz), A7 = 1 5 ms See text for details 

notions of (mean firing) rate which are of ten confused (Gerstner 1999): an average 
over time, an average over several neurons or an average over several runs of an 
experiment. T h e temporal average (Adrian 1926) - simplest and most commonly 
used notion of firing rate - is also used in this paper. This is essentially the spike 
count inside a given time window divided by the length of this time window. 
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To exploit the information contained in rate-encoded spike trains, for example 
the discharge from the slowly adapting peripheral afferents (Zigmond et al 1999), 
the central nervous system continuously has to monitor, analyze and compare its 
inputs entering along parallel lines 

To obtain a rate-encoded information incoming along just one fiber it would 
be enough to determine the number of spikes during the given time window With 
the assumption of regular input frequency, as it is in our paper, it is enough to 
compute the length of just one inter-spike interval to obtain the frequency value 

It is not necessary to determine the inter-spike interval lengths if the nervous 
system only needs to compare the incoming rate-encoded spike trains In such a case 
a comparison of corresponding inter-spike intervals (Pavlásek et al 1996) suffices, 
which is exactly the problem presented in this paper 

The proposed model network is able to continuously compare incoming fre­
quencies (rate-encoded spike trains) and dynamically change its output according 
to input changes 

Biological plausibility of the model network 

The morphological and functional properties of the devised network (e g , conver­
gence or divergence, coincidence detection, delay lines) are so widespread in the 
nervous system that it is easy to imagine their potential use at any level of infor­
mation processing 

The input frequencies were assumed to be regular, which means that inside 
an appropriate time window the interspike interval lengths were constant The 
time window cannot be made arbitrarily short because the processing of an input 
requires some time (for example, Fig 3, n 3, from 360 ms to 400 ms of simulation 
time) and, moreover, when using very short time windows, the distinction between 
rate code and temporal code is not clear (Theunissen and Miller 1995) 

Regular frequencies occur in the nervous system and many isolated neurons 
generate approximately regular sequences of spikes when injected a constant current 
(Jack et al 1975, McCormick et al 1985, Mamen and Sejnowski 1995) 

Network parameters 

Four basic parameters of the neuroids and their connections were adjusted in or­
der to establish the proper dynamics of the network shape of the post-synaptic 
potential (Psp), threshold (Th) value, synaptic weight value (Sw) and delay lines 

To simplify the design and analysis of the network, Psp shape and Th values 
were chosen to be the same for all neuroids 

The specific parameters of Psp (see Methods) were set according to the ex­
perimental results, so that the Psp time course (Fig 2B) would resemble the time 
course of experimental results as close as possible Changing any of the parameters 
(íi,Í2) would require further adjustment of the other parameters of neuroids The 
relative threshold values were set at 0 5 for all neuroids 

Both delay lines (Fig 2A) were designed specifically (delay = 3 5 ms) to allow 
n 8 to inhibit the rest of neuroids after detecting coincident spikes 
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Having these parameters constant it was the value of synaptic weight that 
had to be adjusted in order to set the proper behaviour of the network. Three 
main types of weight values were used. All neuroids with suprathreshold excitatory 
influence had their synaptic weights (Sw — 0.6) set above the Th value. The 
synaptic weights of inhibitory neuroids (Sw = —0.7) were set to be opposite in 
value to their excitatory counterparts. Both subthreshold excitatory inputs of n.8 
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were set at 0.6 Th (Sw = 0 3) in order to enable the proper coincidence detection. 
Subthreshold excitatory inputs of nn .3 ,7 were set in the following way. inputs from 
dynamic memories [1; 2], [5; 6] had small synaptic weights (Sw = 0.085) and the 
inputs incoming directly from the input lines were slightly subthreshold (Sw = 0.4). 
Therefore weak, continuous stimulation from dynamic memories required strong 
influence from input lines in order to generate a spike at the output 

The network parameters were chosen specifically to enable the network to 
perform the task. Change in any of the above parameters would require appropriate 
adjustments of the other parameters in order to re-establish the proper network 
dynamics. 

"Coding" properties of the network 

In the definition of the presented problem we assumed that the network only de­
tects the difference between the input frequencies. However, according to results of 
simulation experiments it can be assumed that the (mean) output frequency value 
is influenced by the input frequencies. 

In the first case if F^ 1 ' is constant (and higher than F ( 2 ) ) and F^ is gradually 
slowing down then more and more spikes of F^ 1 ' occur between the spikes of F^ 
(simply because 7*2^ is progressively longer than 7 ^ ' ) . If the lower input frequency 
is constant and the higher one is changing the situation is analogical The resulting 
(mean) output frequency is proportional to A7 (inter-spike interval difference), the 
faster the constant frequency the steeper the dependence 

The second case (constant A7) is more complex Both input frequencies grad­
ually slow down (7(1) and 7 ' 2 ' rise) and due to constant A7 the ratio I^/lW 
approaches 1 According to network definition this must mean that the resulting 
output frequency will gradually slow down so the ratio F*3^ / F ^ 1 ' will approach 0 

< 
Figure 8. Results of simulations (network - Fig 2A) with a constant pl> /p2> ratio 
(the actual values of input frequencies vary) F^\ F ( 2 ) denote the input frequencies, 
F ( 3 ) denotes the output frequency, 7 ( 1 \ / ' 2 ) denote the inter-spike interval lengths (see 
Notation and conventions for details) A. The results of simulations with P1' /P = 2/3 
Raster maps of the two input frequencies (i\, i2) and output neuroids (3, 7) are shown 
Both input frequencies started simultaneously Simulation time was 300 ms The values of 
J (1) (F ( 1 )) and 7 (2 ) (F(2>) were as follows a) 7 (1) = 16 ms (F ( 1 ) ~ 62 Hz), 7 (2 ) = 24 ms 
(F ( 2 ) ~ 42 Hz), b) 7 (1 ) = 34 ms (F ( 1 ) ~ 29 Hz), 7 (2) = 51 ms (F ( 2 ) ~ 20 Hz), c) 7 (1 ) = 
30 ms (F ( 1 ) ~ 33 Hz), 7 (2 ) = 45 ms (F ( 2 ) ~ 22 Hz) B . The results of simulations with 
three different 7 ( 1 ) /7 ( 2 ) ratios The proposed relations between F<3)/F ( 1 ) and Pl) are 
shown Crosses mark the results of particular simulations The straight lines, showing the 
proposed relations, are linear regression fits to the results d) i^ 1 ' / / ' 2 ' = 2/3 The black 
triangles marked a, b, c correspond to panels a, b, c of this Figure e) P1'/P2' = 3/4, f) 
7<1>/7<2> = 4/5 
Note F ( 1 ) is higher in all simulations considered m this Figure, which means that the 
only output frequency is F ' 3 ' 
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And finally, m the third case (constant 1^ /I^) it is evident that the relative 
position of spikes m input frequencies and then the relative position of spikes during 
processing m the network (we assumed regular frequencies) is constant and only 
the absolute lengths of 7'1 ' and 7^2' differ Consequently the output generated by 
the network is (in principle) the same The only difference is the time scale of 
the output the faster the input frequencies the faster the output frequency This 
means that also position of spikes in the output tram related to the position of 
spikes in the faster input frequency is constant and the ratio F^/F^ (in our 
case) must be constant 

The proposed relations among input and output frequencies are fits to the 
results of simulation experiments Some of the results are not in agreement with the 
predicted values (see, for example, Fig 8Bd and Fig 8Be) These results represent 
the situations in which the output pattern changed (see Fig 6A, Fig 8Ab) However, 
such outlaid values are allowed because the network was designed to compare the 
input frequencies and the results of simulations do tell us which frequency is higher 

On the other hand, the results do suggest that the network could encode 
the information about both input frequencies into one output stream But the 
proper encoding would require a well-tuned network with precise values of neuroid 
parameters, it is an open question whether such precise parameter values would be 
attainable m real neuronal networks 

The output stream would then encode both the position of higher frequency 
(location code) and the relation between the input frequencies (mean rate code) 
However, in order to exploit these types of information contained in output stream 
the decoding mechanism should know what the original frequency was 

Biological reality solving more complex tasks 

Comparing only two regular incoming frequencies is ceitainly a simplified case The 
central nervous system faces a fairly more difficult task It needs to compare many 
different frequencies entering along thousands of parallel fibers The proposed model 
network is small and simple and many of such small "comparators" would have 
to be combined together (in parallel) for continuous monitoring of the incoming 
frequencies for the processing in the higher stages of the nervous system 

It is \ irtually impossible to compare every couple made of various inputs in­
coming from the whole body because such comparison would require an enormous 
amount of comparators The required amount would grow exponentially with the 
growing number of inputs 

We can assume that only the inputs incoming from adjacent places are con­
sidered to be relevant for frequency comparison and as such they are compared 
For example, the code for roughness exists in the difference in firing rates between 
adjacent slowly adapting Type I (SAI) afferents (Hsiao et al 1993) 

Further reduction of the required amount of comparators can be obtained if 
we assume that the exact comparison of inputs from two adjacent points (i e two 
adjacent receptors) is not important for information processing in higher stages but 
only rough difference detection (i e lower vs higher) between larger (macroscopic) 
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areas is required. For example, the minimum separation between two points t h a t 
permits each to be perceived separately (two-pointlimen) around the mouth is 0 5 
mm, but the Merkel disks density in the same region is 50 m m - 2 (Zigmond et al. 
1999) 

It is hypothessed, t h a t in such a case, the continuous difference detection 
of inputs incoming from adjacent receptor areas (e.g., edge detection) might be 
effected in a stepwise manner. The presented network(s) could be connected in 
a few successive steps, first selecting the fastest frequency in the areas and then 
comparing the "winners" together. 

These assumptions correspond well with neurophysiological findings that the 
receptive fields of neurons in somatosensory system tend to become larger at higher 
levels as the contributions from a large number of receptors are added and compared 
with one another (Zigmond et al. 1999). 
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