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Minireview

“Lysine is the Lord”,
thought some scientists in regard to the group
interacting with fluorescein isothiocyanate
in ATP-binding sites of P-type ATPases
But, is it not cysteine?
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Abstract. Isothiocyanates are recognized inhibitors acting on ATP-binding sites
of P-type ATPases. Detailed studies with modification of proteins in molecules of
purified ATPases by fluorescein isothiocyanate (FITC) and consequent tryptic hy-
drolysis followed by isolation and sequencing of the respective peptide fragments
revealed FITC bound to a lysine residue. This residue was then indicated to be
essential for the interaction of ATP with the P-type ATPases. Nevertheless, upon
an exchange by site directed mutagenesis of lysine, believed to be essential, the ex-
pected total inhibition of ATPase activity was missing. In addition, in the case of
the plasma membrane Ca2+-ATPase, the residual activity still remained sensitive
to FITC. It was attempted to explain the latter finding by hypothetical existence of
some other lysine residue essential for the ATPase activity. On the contrary, in our
previous studies we have shown that, based on the reactivity of isothiocyanates,
the primary target of FITC in P-type ATPases has to be the SH group of a cysteine
residue. However, later on, in altered conditions during trypsinolysis and sequenc-
ing, FITC may become transferred from its original site of interaction to a lysine
residue and this may lead to final identification of the label on a false place. The
present study represents an attempt of elucidating the controversy whether it is
lysine or cysteine that represents the FITC-sensitive group truly responsible for
the recognition by the active site of P-type ATPases of ATP and its binding.
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Affinity versus stability in reactions of isothiocyanates

High reactivity of isothiocyanates (ITC) with nucleophilic compounds (NC) is
based on a partial lack of electron density localized on the carbon atom in the
—NCS group. The reaction itself may be represnted by the simplified equation:

R—N——Cδ(+)——S + H—Xδ(−)—R1 ←−−−−→ R—NH—C

X—R1

——S

In proteins, the —SH, —NH2 and —OH groups of cysteine, lysine and ser-
ine residues represent adequate partners for the interaction with isothiocyanates.
When expressing the affinity of a primary aminogroup for reaction with ITC in
arbitrary units (and setting it equal to 1), then the affinity of the hydroxyl group
will be 0.2 and the affinity of the sulfhydryl group will range within the interval
1,000—1,000,000 (Drobnica and Gemeiner 1976; Drobnica et al. 1977; Gemeiner
and Drobnica 1979). This means that upon reacting with proteins, ITC will choose
—SH with highest preference. Nevertheless, the resulting reaction products S-esters
of dithiocarbamic acid exhibit low thermodynamic stability, i.e. they dissociate
easily demonstrating the reversible character of this reaction. The reaction of ITC
with amino groups runs much slowlier and provides considerably more stable N,
N′-disubstituted derivatives of thiourea. Moreover, the latter reaction seems to be
almost irreversible (Drobnica and Gemeiner 1976; Drobnica et al. 1977; Gemeiner
and Drobnica 1979).
In the process of isolation of ITC-labeled proteins that follows, the excess of

ITC, which does not participate in the reaction, becomes removed. Consequently,
because of its low equilibrium constant the primarily formed ITC—SH reaction
product undergoes a fast decay. The ITC liberated may enter further reactions
with —SH, —NH2 or —OH groups with diverse preferences but, eventually only
the product with —NH2 groups remains stable and this leads to its gradual accu-
mulation (Wilderspin and Green 1983; Swoboda and Hasselbach 1985).
Preferential interaction of isothiocyanates with SH-groups of membrane pro-

teins could be documented by the finding of Santos et al. (1999). These authors
showed that sulfhydryl groups of cysteine residues are modified by 4,4’-diisothio-
cyanatostilbene-2, 2’-disulfonic acid when this substance was applied to modulate
pNPPase activity of the plasma membrane calcium pump.

Reaction of ITC with P-type ATPases

P-type ATPases represent well-known systems for active transports of cations, but
they are still extensively studied (Nakamura et al. 1997; Breier et al. 1998; Obšil
et al. 1998; Sulová et al. 1998; Tsuda et al. 1998; Ward and Cavieres 1998; Gatto
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Table 1. Amino acid sequence of oligopeptides that represent FITC sensitive ATP binding
site of P-type ATPases.

ATPase Sequence

(H+/K+)-ATPase 1 KGA PER VLE R�S
(H+/K+)-ATPase 2 KGA PER ILE K�S
(Na+/K+)-ATPase KGA PER ILD R�S
SRCa2+-ATPase KGA PEG VID R�T
PMCa2+-ATPase 1 KGA SEI ILK K�F
PMCa2+-ATPase2 KGA SEI VLK K�C

(H+/K+)-ATPase 1 – from gastric mucosa (Shull and Lingrel 1986); (H+/K+)-ATPase 2
– hypothetical enzyme from distal colon (Crowson and Shull 1992); (Na+/K+)-ATPase
(Shull et al. 1985); SRCa2+-ATPase (MacLennan et al. 1985); identical structures have
been described for all isoenzymes SERCA1, SERCA2a, SERCA2b and SERCA3 (Inesi and
Kirtley 1992); PMCa2+-ATPase (1) – plasmalemmal Ca2+-ATPase isoenzyme 1 (Verma
et al.1988); PMCa2+-ATPase (2) – plasmalemmal Ca2+-ATPase isoenzyme 2 (Shull and
Greeb 1988).

et al. 1999; Scheiner-Bobis and Schreiber 1999; Vrbjar et al. 1999; Lambrecht et
al. 2000; Ziegelhöffer et al. 2000).
FITC has been often applied to label the ATP-binding site of P-type ATPases

(Carilli et al. 1981; Pick and Bassilian 1981; Mitchinson et al. 1982; Farley et
al. 1984; Kirley et al. 1984; Farley and Faller 1985; Ohta et al. 1985; Filoteo et
al. 1987; Lin and Faller 1993; Smirnova and Faller 1993; Nakamura et al. 1997;
Tsuda et al. 1998; Ward and Cavieres 1998). After being cleaved by trypsin the
ITC label bearing oligopeptides were purified and sequenced (Mitchinson et al.
1982; Farley et al. 1984; Kirley et al. 1984; Farley and Faller 1985; Ohta et al.
1985; Filoteo et al. 1987). These oligopeptides exhibited considerable homology in
their sequence. Five from eleven amino acids were identical in all P-type ATPases
from animal tissue according to the formula K, G, A, X, E, X, V/I, L/I, X, R/K,
C (Table 1). The label was always found to be linked with a lysine first in the
sequence. Based on these findings it was concluded that the lysine bearing the
label is essential for binding of ATP and/or ATPase activity of these enzymes. On
the other hand, we could demonstrate that the activity of (Na+/K+)-ATPase may
also be competitively inhibited by isothiocyanates that are bound exclusively to the
—SH group of the cysteine residue (Ziegelhöffer et al. 1983, 1987, 2000; Breier et
al. 1989, 1995, 1996). The same studies also revealed that, in spite of the difference
in the site of interaction, all features of inhibition seen after the interaction of
ITC with cysteine were similar to those described when the ITC was found to be
localized on lysine. Based on this finding and the knowledge about the reactivity
of ITC, we concluded that cysteine rather than lysine represents the group which
first recognizes and binds ATP in the active site of the (Na+/K+)-ATPase. Our
conclusion became strongly supported by experiments on various P-type ATPases
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such as the (Na+/K+)-, SRCa2+- and PMCa2+-ATPase in which lysine believed to
be essential for ITC binding was replaced with other amino acids by means of site
directed mutagenesis (Maruyama and MacLennan 1988; Wang and Farley 1992;
Adamo et al. 1996). Namely, these studies did not result in the expected complete
loss of activities of the respective enzymes, even the opposite: the residual activity
of mutant PMCa2+ ATPase continued to be FITC sensitive (Adamo et al. 1996).
The explanation for the latter finding by hypothesising the existence of another
lysine that, in the absence of the first “essential one”, will replace it in its function
(Adamo et al. 1996) may hardly be considered as plausible. This is because no
second labeled lysine could be demonstrated in studies analyzing tryptic fragments
after a complete inhibition of ATPase by ITC. Hence, it seems much more probable
that FITC inhibits the ATPases by modification of cysteine which, because of the
described instability of the reaction product, cannot be finally detected as the
original site of the ITC interaction.
The role of the SH groups in ATP binding can be documented by the finding of

Scheiner-Bobis et al. (1992) that sulfhydryl reactive ATP analogue (8-thiocyanato-
ATP) was shown: i) to inhibit the activity of (Na+/K+)-ATPase and kinases and
ii) to interact exclusively with the ATP binding domain of this enzymes. Gatto et
al. (1999) have recently identified Cys577 as a “conformationally mobile residue
in the ATP-binding domain of (Na+/K+)-ATPase α-subunit”. The importance of
the SH-group of cysteine for the interaction with ATP in its specific binding sites
may be also documented on P-glycoprotein (a transport ATPase of the plasma
membrane with two similar ATP-binding sites exhibiting ABC consensus). This
protein contains thiol groups essential for ATP binding in its both ATP-binding
sites (al-Shawi et al. 1994; Liu and Sharom 1996, 1997) which exhibit the following
structure: XSGCGKY, when X represents N or S and Y represents T or S (Van
der Bliek et al. 1987, 1988; Lincke et al. 1991).

The way how ATP may bind in the ATP binding sites of the P-type
ATPases

Our hypothesis about the mode of ATP binding in the ATP binding sites of P-
type ATPases is based on the essential involvement of a cysteine SH-group and
the partial importance of a lysine NH2-group. The former one may recognize the
ATP molecule and bind it by forming a hydrogen bond with the 6-amino-group
on the adenine part of ATP (Patzelt-Wenczler and Schoner 1981). The NH2-group
of lysine may be important for accommodation of negatively charged phosphate
groups of ATP (Breier et al. 1996; Scheiner-Bobis and Schreiber 1999; Ziegelhöffer
et al. 2000). Such a role of lysine in ATP binding is also confirmed by the finding
that its replacement by the negatively charged glutamic acid residue induces a dra-
matical diminution of the affinity of the (Na+/K+)-ATPase and SRCa2+-ATPase
to ATP (Maruyama and MacLennan 1988; Wang and Farley 1992). This lysine was
recently assumed to arrest β- or (α-) phosphate of ATP in a proper position prior
to hydrolysis of γ-phosphate group (Scheiner-Bobis and Schreiber 1999).
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Table 2. Amino acid sequence of oligopeptides, that represent the ATP binding site of
ATP dependent proteases.

Enzyme Sequence

Human mitochondria lon protease1 �FY GPP GVG K
Mitochondria lon protease from S. Cerevisiae2,3,4 �FV GPP GVG K
ATP-dependent protease LA1 from B. Subtilis5 �LA GPP GVG K
ATP-dependent protease LA from E. Coli6,7,8,9,10 �FY GPP GVG K

1Amerik et al. (1994), 2Van Dyck et al. (1994), 3Suzuki et al. (1994), 4Hahn et al. (1988),
5Riethdorf et al. (1994), 6Thomas et al. (1993). 7Amerik et al. (1988). 8Fischer and
Glockshuber (1993), 9Chin et al. (1988).10Gayda et al. (1985).

The geometric arrangement of the ATP-binding site of the (Na+/K+)-ATPase
and PMCa2+-ATPase were investigated by using the Desktop Molecular Modeling
software (Oxford Electronic Publishing, UK). This procedure revealed that there
might really exist structures of the ATP binding oligopeptides (see Table 1) in
which the distances between the atom of S in cysteine and the atom of N in the
ε-amino-group of lysine are 1.235 nm and 1.228 nm for (Na+/K+)-ATPase and
PMCa2+-ATPase, respectively. These distances match with the distance of 1.097
nm or 1.010 nm between the atom of H of the amino-group in position 6 and
the atom of O of the β- or α-phosphate group in the ATP molecule. The possi-
bility of ATP binding oligopeptide to bind ATP in the manner described above
was checked by the computation of the three-dimensional structure of complexes
formed from ATP binding peptide (for (Na+/K+)-ATPase) and ATP (Fig. 1), using
ACD/ChemSketch software (produce by Advanced Chemistry Development, Inc.,
Canada). This procedure revealed that the respective complexes might really exist
in both cases, i.e., when ATP is interacting with lysine 480 by α or β phosphate
group and with cysteine 490 by 6-amino group of adenine.
ATP-dependent proteases (lon proteases) may be considered a group of en-

zymes exhibiting partial similarities as compared with P-type ATPases in ATP
binding sites. The structure of the ATP binding sites of ATP-dependent proteases
from different species exhibits a considerable homology (Tab. 2) documenting the
localization of both, a cysteine and a lysine residue that are divided by a span of
8 amino-acids (Gayda et al. 1985; Amerik et al. 1988; Chin et al. 1988; Hahn et
al. 1988; Fischer and Glockshuber 1993; Thomas et al. 1993; Amerik et al. 1994;
Suzuki et al. 1994; Van Dyck et al. 1994; Riethdorf et al. 1994). In this respect, the
P-type ATPases differ from proteases in the length of the span 9 amino acids lons,
as well as in the opposite orientation of the sequence starting in ATPases with the
lysine containing part directed to the N terminal. Nevertheless, from the described
structural arrangements of the ATP binding sites of P-type ATPases and ATP
dependent proteases it may be assumed that both groups of enzymes will interact
with the ATP molecule in a similar way.
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Figure 1. Three dimensional structures of complexes formed by interaction of ATP bind-
ing oligopeptide from (Na+/K+)-ATPase (Table 1) and ATP. Upper structure – Example
of 6-aminogroup of ATP interacting with —SH group of cysteine 490 and β-phosphate
of ATP interacting with NH2 group of lysine 480. Lower structure – Example of 6-
aminogroup of ATP interacting with —SH group of cysteine 490 and α-phosphate of
ATP interacting with NH2 group of lysine 480. Undefined bonds between phosphates of
ATP and NH2 groups of oligopeptide as well as 6-aminogroup of ATP and – SH group
of oligopeptide were chosen for the computation. The structures of the complexes were
computed using ACD/ChemSketch software (produced by Advanced Chemistry Devel-
opment, Inc. Canada). This software is limited to molecules that contain less than 200
atoms. To meet this condition, both argentines in this structure had to be replaced by
glycines.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

In conclusion, we could stress that cysteine in the ATP binding oligopeptide
of P-type ATPases (Table 1) is probably essential for ATP binding, and moreover
represents the probable target for attack by thiol reacting substances, that inhibit
ATPase activity (Ziegelhöffer et al. 1983, 1987, 2000; Scheiner-Bobis et al. 1992;
Breier et al 1995, 1996; Gatto et al. 1999; Lambrecht et al. 2000). Nevertheless,
the possibility that other cysteine residues, for example cysteine 577 in (Na+/K+)-
ATPase (Gatto et al. 1999), is essential from these aspects could not be excluded
either.
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field of bioreactivity of isothiocyanates, who passed away twenty years ago.
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