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Mathematical Modeling of the Effect
of the Sarcoplasmic Reticulum Calcium Pump Function
on Load Dependent Myocardial Relaxation
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Abstract. Earlier, we developed a mathematical model of myocardial contraction-
relaxation cycle regulation. A great number of mechanical experiments was simu-
lated in the model, the phenomenon of load dependent relaxation (LDR) included.
In the present work we used the same model to analyze experimental data reveal-
ing that high temperature leads to reduction of LDR. We simulated three main
factors arising due to high temperature, which a priori may cause LDR reduc-
tion: increasing the cross-bridges cycling rate, decreasing the duration of the Ca
transient ascending limb, and increasing Ca pumping rate. Indeed, these factors
together result in LDR reduction; i.e., the model correctly simulates the effect of
high temperature on LDR in general. At the same time, the sensitivity of LDR to
the third factor is much higher than to the first and the second ones; i.e., increasing
the rate of Ca pumping is sufficient to induce the observed effect in the framework
of the model. This seems to contrast with the result of our previous study dealing
with the simulation of LDR disappearance due to increasing Ca pumping rate as it
happens during relatively severe cardiac hypertrophy. However, the model analysis
shows that the specific mechanism underlying the change in Ca pumping rate in
either case is extremely important for the effect on LDR. Particularly, the model
predicts that LDR will reduce if this rate increases due to enhanced ATP hydrol-
ysis rate by the Ca pump; and vice versa, if this rate increases due to decreasing
retroinhibition of the pump ATPase, it may result in LDR increase. Probably, but
the first mechanism is operational due to high temperature and makes LDR to re-
duce, whereas slowing down Ca pumping due to increasing retroinhibition results
in LDR disappearance during severe cardiac hypertrophy.
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Introduction

This work aims to analyze the temperature effect on LDR by means of a math-

Correspondence to: Leonid B. Katsnelson, Institute of Physiology, Skladskoy proyezd
6, Ekaterinburg 620016, Russia. E-mail: lbk@efif.uran.ru



138 Katsnelson et al.

ematical model. This analysis, in turn, helps to shed light on some mechanisms
regulating the phenomena of load dependent relaxation as such. It is natural to
suppose that two intracellular systems control this phenomenon. On the one hand,
the phenomenon may be influenced by the system of cycling myosin cross-bridges;
on the other hand, the time course of Ca2+ activation may also play a role. A much
more complicated problem is to clarify the specific mechanisms of these influences.

For example, LDR was found to disappear during relatively severe myocardial
hypertrophy (Lecarpentier et al. 1987). As presumed, this disappearance must be
due to the slowing down of Ca2+ uptake by the sarcoplasmic reticulum (SR) in
hypertrophied myocardium (Brutsaert and Sys 1989).

In general, one probable scheme explaining the LDR phenomenon may be
presented as follows.

During isotonic twitch sarcomeres shorten to reach much smaller end-systolic
lengths, and this occurs with higher velocities than during isometric twitch when
the shortening is limited by the series elastic component stiffness.

It was shown with the help of the aequorin marker that the time course of
the Ca transient was longer in isotonic than in isometric twitch (Lab et al. 1984).
This data was interpreted as being the result of a decrease in troponin C affinity to
Ca2+ with sarcomere shortening. In turn, this shortening deactivation inevitably
results in a much faster relaxation phase. Thus, the LDR phenomenon might be
controlled by the shortening deactivation of the thin filament.

Within the framework of this scheme, the smaller the afterload the more sig-
nificant the LDR.

Moreover, it is clear that additional Ca2+ thrown off from the troponin C
(TnC) during isotonic contraction as compared with the isometric one may either
be bound with TnC once more or be pumped by SR. Therefore, the role of Ca
pumping by SR may influence LDR.

The cross-bridges cycling effect on LDR is also implied in this scheme, because
as we shall detail below, just this cycling determines reduction of TnC affinity to
Ca2+ with sarcomere shortening.

Mathematical modeling is a useful method to study LDR. Moreover, we believe
that it is absolutely necessary to use such modeling to study any effects connected
with complex changes in different intracellular processes controlling mechanical
properties of the cardiac muscle. Various influences changing LDR are just exam-
ples of these effects. It is clear that a mathematical model used to study effects
affecting LDR in the heart muscle must, first of all, correctly simulate the LDR phe-
nomenon as such and include descriptions of all the main intracellular mechanism
underlying this phenomenon. For a long time we have been dealing with mathemat-
ical modeling of processes which regulate heart muscle contraction (Katsnelson et
al. 1990; Izakov et al. 1991; Katsnelson and Markhasin 1996). In particular, special
attention was paid to analysis of several aspects of the LDR phenomenon. A model
of myocardial contraction we developed successfully simulates LDR and its disap-
pearance due to slowing down Ca uptake in SR (Katsnelson and Markhasin 1996).
Besides, the model was verified by simulating a great number of experimentally
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observed mechanical phenomena (Izakov et al. 1991; Katsnelson and Markhasin
1996).

In creating the model several assumptions were made. All of them are based
on experimentally observed muscle properties (Izakov et al. 1991). In particular,
there are two cooperative mechanisms of Ca2+ binding with TnC:

– TnC affinity to Ca2+ increases due to the increase in the amount of cross-
bridges strongly attached to the actin filament (type 1 cooperativity);

– TnC affinity to Ca2+ increases due to the increase in the concentration of
Ca-TnC complexes (type 2 cooperativity).

The model includes mathematical formulas describing dependencies of the
cross-bridge average probability to be strongly attached to the actin filament on the
sarcomere length and on the velocity of its shortening/lengthening (Izakov et al.
1991). These dependencies were carefully verified (ibidem). Thus, the length and its
change velocity influence the number of strongly attached cross-bridges in the model
and hence – through the type 1 cooperativity – they influence also TnC affinity to
Ca2+. Just this feedback between mechanical conditions of the muscle twitch and
its Ca2+ activation allowed us to simulate and explain LDR-phenomenon within
the model (Katsnelson et al. 1990; Izakov et al. 1991). At the same time, these cir-
cumstances revealed that both Ca2+ activation and cross-bridges cycling through
the cooperativity mechanisms actually controlled LDR within the model.

The next step of the model analysis was connected with the above-cited dis-
appearance of LDR due to slowing down of Ca pumping during severe myocardial
hypertrophy. As the analysis showed the slowing down should be very specific in
this case: the Ca pump rate should be even smaller in the isotonic mode as com-
pared with the isometric one; i.e., additional free intracellular Ca2+ thrown off from
TnC due to the shortening in isotonic mode as compared with isometric one should
result in additional slowing down of the pumping. Therefore, we have taken into
account that, according to experimental data (Martonosi 1979), a partial inhibition
of the SR calcium pump occurred alongside an increase in the amount of calcium
uptake by SR. A modified formula of Ca pump describing this partial inhibition
allowed us to solve, within the model, the problem of LDR disappearance due to
slowing down of Ca pumping during severe myocardial hypertrophy. The following
conclusion arrived: probably, the level of inhibition becomes higher in severely hy-
pertrophied myocardium in comparison with normal one. This circumstance results
in slowing down Ca pumping in both isometric and isotonic modes. However, in the
latter case it is even stronger. Hence, LDR diminishes, right down to its absolute
disappearance. These results and the underlying reasons were discussed elsewhere
(Katsnelson and Markhasin 1996).

Thus, we have a positive previous experience in the application of the model
to various aspects of LDR phenomenon. This made us employ the same model for
an analysis of the temperature effect on LDR.

Different authors experimentally observed the dependence of LDR on tempera-
ture. For instance, data published by Pogessi et al. (1982) revealed this dependence.
One of the most detailed experimental studies of this effect was carried out by Do-
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brunz and Berman (1994). They showed that the increase in temperature from
24◦C to 37◦C leads to considerable attenuation of LDR in myocardial strips. Re-
markably unlike in hypertrophied myocardium this attenuation was accompanied
with an obvious increase in Ca pumping rate rather than its decrease. Dobrunz
and Berman described (ibidem) a number of other mechanical events which also
resulted from the above temperature change. In particular, they examined how this
change influenced mechanical characteristics of the isometric contraction-relaxation
cycle such as T+dF/dt (time to peak +dF/dt), TR1/2 (time to half relaxation from
peak force), and τ f (time constant of the final exponential decay of force from
10% developed force). Using Q10 magnitudes Dobrunz and Berman showed that
the change of temperature affected the decrease in τ f to the greatest extent and
the decrease in T+dF/dtwas affected to the least extent. The effect on TR1/2 was
intermediate.

Besides, the authors showed that the T+dF/dt/TR1/2 ratio increased with the
increasing temperature. Dobrunz and Berman used these data to explain LDR
diminution due to high temperatures. For this purpose, they considered T+dF/dt,
TR1/2 and τ f as indices of intracellular molecular mechanisms. Indeed, according
to a variety of experimental data (Yue 1987) T+dF/dt coincides with the peak of
the Ca transient, and these authors used this as an indirect indicator of the timing
of SR Ca handling in general. Furthermore, they used τ f as a pure indicator of
cross-bridges kinetics (Peterson 1989) and TR1/2 as a mixed indicator of both cross-
bridges kinetics and Ca handling. Analyzing changes of these indices due to high
temperatures they concluded that the decrease in T+dF/dt indicated acceleration
of Ca uptake by the SR. However, they stressed that τ f changed 3 times as large as
T+dF/dt. Therefore, they believed that just acceleration of cross-bridges detachment
was the main determinant of the increased myocardium relaxation rate in the
isometric mode. Moreover, they thought that the ratio T+dF/dt/TR1/2 excluded
a contribution of Ca kinetics to the index TR1/2 and therefore indicated only
cross-bridges cycling. Thus, from their viewpoint an increase in this ratio also
confirmed the key role of cross-bridges in accelerated isometric relaxation due to
high temperature.

Their final conclusion is as follows. “Increasing temperature produces . . . two
competing and opposite influences on the degree of LDR: acceleration of the in-
tracellular calcium transient which would by itself increase load dependence of
relaxation, and acceleration of isometric relaxation which would by itself decrease
load dependence of relaxation. The actual change in LDR with temperature re-
flects a balance of these two competing effects. . . Increasing temperature speeds up
twitch mechanical characteristics to a greater degree than it speeds up SR calcium
handling, resulting in the observed decrease in LDR”. In other words, “Ca tran-
sient persists later into the isotonic twitch relative to the time course of isometric
relaxation, consistent with the observed decrease in LDR”.

Thus, the conclusion of the above authors was based on four main premises.
First, they considered T+dF/dt,TR1/2 and τ f to be indicators of intracellular pro-
cesses as described above. Second, they believed that Ca pumping by itself mainly
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controls isotonic rather than isometric relaxation. Third, they declared that accel-
eration of this pumping would always induce, by itself, an increase in LDR. Fourth,
they believed that cross-bridges detachment mainly controls isometric rather than
isotonic relaxation, and therefore acceleration of the detachment should induce
by itself, just decrease in LDR. Furthermore, they compared these potential “in-
creases” and “decreases” in LDR by means of the above indicator, and obtained a
prevailing “decrease” in the case of increasing temperature.

However, we will try to show that their assumptions may be disputed.
In particular, the most important misleading point within the framework of

the cited concept is the assumption that acceleration of the Ca transient always
induces, by itself, an increase in LDR, because this acceleration mainly induces an
increase in isotonic rather than isometric relaxation rate, whereas acceleration of
the cross-bridges kinetics, on the contrary, mainly accelerates isometric relaxation
and consequently induces, by itself, a decrease in LDR. As the model analysis
shows, both these factors accelerate both isometric and isotonic relaxation. Such
an alternative assumption seems more preferable, as it not only was verified within
the model, but has also an independent experimental justification (Chemla et al.
1986) which we shall briefly clarify below. Evidently this alternative assumption
completely rejects the cited concept.

Let’s note that just the assumption that shortening of the Ca transient time
course always induces an increase in LDR prompted Dobrunz and Berman to seek
an opposite stronger mechanism which would lead to a final decrease in LDR due
to high temperature despite the presumable effect of Ca pumping.

However, earlier published experimental data showed, on the contrary, that
shortening of the time course of Ca transient due to a decrease in extracellular
Ca2+ in solution resulted in LDR decrease (Chemla et al. 1986). Moreover, it did
result in simultaneous acceleration of both isotonic and isometric relaxation with a
prevailing increase in the rate of the latter one. These data mean that acceleration
of the Ca transient not always produces, by itself, an increase in LDR.

On the other hand, the data on hypertrophied myocardium mentioned above
suggest that acceleration and decreased Ca transient in normal as compared with
hypertrophied tissue did result in elevated levels of LDR.

Probably, a decreased Ca activation may produce, by itself, both an increase
and a decrease in LDR in various conditions, and the result depends on more
specific features of this activation. From our point of view, the key feature is the
difference between Ca activation of TnC in isotonic twitches vs such activation in
isometric mode. If any factor acting on the muscle decreases this difference, LDR
will also decrease, and vice versa.

As we shall show further in this work, a decrease in this difference may appear
together with both generally increased and generally decreased Ca activation of
the muscle. Moreover, the result may be controlled by various mechanisms respon-
sible for the change of the Ca pumping rate. In particular, we will show here that
acceleration of the pumping may induce, by itself, either increase or decrease in the
above difference, despite the fact that any such acceleration certainly produces, by
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itself, an accelerated Ca transient.
Therefore, acceleration of Ca pumping may, by itself, cause either increase or

decrease in LDR. More exactly, at least in the framework of our model, acceleration
of Ca pumping caused by acceleration of the pump ATP hydrolysis may lead to
a decrease in LDR, whereas acceleration of the pumping due to weakening of the
pump inhibition may lead to an increase in LDR. This is the main concept of this
study which is analyzed and discussed in detail below.

Methods

Description of the mathematical model

As a tool for this theoretical study we used our mathematical model which has
been published previously (Izakov et al. 1991; Katsnelson and Markhasin 1996).
By means of that model we succeeded in explaining and simulating the effects of
mechano-chemical uncoupling, LDR included (Izakov et al. 1991). Later on, we
perfected the model so as to enable to simulate other physiological phenomena. In
particular, we simulated and explained LDR disappearance which often accompa-
nies the slowing down of Ca uptake by the longitudinal SR (LSR) in hypertrophied
myocardium (Katsnelson and Markhasin 1996).

The model equations have been already substantiated and described in detail
in the above mentioned papers. Therefore, we shall now highlight only those pecu-
liarities of the model which make it useful as an instrument for studying various
aspects of the LDR phenomena.

(I) The model has been set up as a system of ordinary differential equations in
which all the variables represent either mechanical or biochemical characteristics
of the muscle fiber.

(II) Such mechanical characteristics include: fiber length, internal length of
the Contractile Element (CE), velocity of fiber shortening or elongation (and of
CE shortening and elongation, as well), active and passive muscle tension.

(III) The concentration of attached cross-bridges is one of the variables respon-
sible for the generation of active tension, and cross-bridges cycling is described in
a particular differential equation of the model.

(IV) The concentration of calcium – troponin complexes (CaTn) is another
variable of the model responsible for the generation of active tension. In the respec-
tive equation the model describes the process of calcium association with troponin
(Tn) and dissociation of these complexes. The processes of calcium association –
dissociation with other intracellular buffers, and Ca uptake by LSR are also de-
scribed in the model.

(V) Two types of cooperativity of contractile proteins observed in biochemi-
cal experiments (Grabarek and Gergely 1983) take a central place in the model.
They are included in the equation describing CaTn kinetics. The essence of this
cooperativity is as follows:

i) the higher the concentration of myosin cross-bridges attached to the actin
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filament close to the CaTn complex, the slower the dissociation of the complex
(type 1 cooperativity);

ii) the higher the concentration of other similar CaTn complexes adjacent to
that under consideration along the actin filament, the slower the dissociation of the
complex (type 2 cooperativity).

(VI) Also, we described in the model a mechanism which, when combined with
type 1 cooperativity, allowed us to find a feedback from the instant muscle length
to the kinetic constant of CaTn complexes dissociation. That feedback is presented
in the model by the formula Π(n1(l1) · n2) (see Appendix 1, equation (2)), where
Π is the function describing type 1 cooperativity; n1(l1) is the average probability
of a cross bridge “finding” an active site on a thin filament; l1 is the instant length
of the contractile element; n2 is the average probability of the attachment of this
cross-bridge to a site “found” (n2 is described in a separate differential equation as
its variable). All other details concerning this formula and its physiological grounds
have been already given in our previous works (Izakov et al. 1991; Katsnelson and
Markhasin 1996). The feedback from l1 to the dissociation of CaTn leads, in turn,
to additional inactivation of the fiber as a result of its shortening.

Items (V) and (VI) are the key points of our approach, which made it possible
to explain and to simulate in the model both LDR and all the other effects of
mechano-chemical uncoupling.

We present the model equations in Appendix 1 without any profound explana-
tion of their physiological essence. Here, we would only like to stress that equation
(3) from Appendix 1 describes cross-bridges kinetics, equation (2) the kinetics of
CaTn, equation (4) the kinetics of intracellular free calcium. In the latter equation
the rate of Ca uptake by LSR is given by the formula:

[rCa · exp(−qCa ·Caf)] ·Caf , (I)

where rCa and qCa are model parameters. Linear coefficient rCa characterizes the
Ca pumping capacity, i.e. rCa reflects the rate of ATP hydrolysis in the Ca pump
for active (uninhibited) calcium ATPase units. Exponential coefficient qCa charac-
terizes the degree of pumping inhibition by calcium. We have already discussed in
our previous paper all the reasons which had led us to involve this formula instead
of the usual one describing the first order pump (Katsnelson and Markhasin 1996).
The molecular mechanism underlying formula (I) is based on the finding that Ca2+

ion, being bound in LSR to the calcium ATPase (in the SR calcium pump), inhibits
its activity (Inesi and Meis 1989). It was that particular formula that helped us
to find an explanation for the LDR disappearance in hypertrophied myocardium
observed experimentally in the guinea pig (Lecarpentier et al. 1987). As we showed
earlier, this disappearance may be a result of specific slowing down of Ca uptake
caused by increased inhibition of Ca pumping (Katsnelson and Markhasin 1996).

At last, we have to stress once more the role of the dependence of Ca activation
on the muscle shortening. In our previous study we have already demonstrated in
detail the great sensitivity of the presented model to changes in the sarcomere
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length: sarcomere shortening produces earlier and faster relaxation due to type 1
cooperativity and to the effect of the sarcomere length on the above mentioned
probability n1(l1) (Katsnelson et al. 1990; Izakov et al. 1991). We have shown
elsewhere the importance of this mechanism for the explanation of a number of
phenomena simulated by the model (Izakov et al. 1991). As it will be shown in this
work, the same mechanism turns out to be very important for the explanation of
LDR decrease at higher temperatures.

Description of the numerical experiments

When simulating the changes in cardiac muscle behavior that result from its heat-
ing, we considered the same three changes considered by Dobrunz and Berman.
Namely:

(α) growth of the rate of Ca pumping in LSR (in the case of heating, we
realized this growth as an increase in the capacity rCa, i.e. as an increase in the ATP
hydrolysis rate for uninhibited calcium ATPase units, rather than as a decrease in
its inhibition. The reasons for choosing this particular variant of increasing the Ca
pumping rate in order to simulate the phenomenon under study by means of the
model will become clear from the analysis presented in Discussion below);

(β) reduction of the time of Ca transient’s ascending limb (as a result of
enhanced rate of Ca release from terminal cisterns);

(γ) increase in the cross-bridges cycling rate.
We could directly simulate all these changes by varying the values of the re-

spective parameters of our mathematical model. Thus, we were able to find out
whether the model reproduces LDR decrease when those three changes are simu-
lated. Moreover, to understand which of these three factors is actually responsible
for the phenomenon under study, we took the following steps in the numerical
experiment.
Step 1. Simulation of a reference contraction (Figs. 1A and 2A) with the basic

model parameter values as shown in Appendix 2.
Step 2. The capacity of Ca uptake by LSR was increased with respect to

Step 1 without any changes in other simulated muscle properties. To simulate
this situation, we set the value of parameter rCa to 5-fold the baseline. All other
parameter values were left unchanged, including parameter qCa (which expresses
the inhibition of Ca pumping). Figs. 1B and 2B show the results of this step of the
numerical experiment: the time course of muscle force development in isometric
and isotonic regimes (Fig. 1B) and the corresponding muscle shortening (Fig. 2B).
Step 3. Figs. 1C and 2C illustrate the result of the stage of our numerical

experiment where one (and only one) more parameter value was modified in addi-
tion to that performed at the previous step: shortening of the duration of the Ca
transient’s ascending limb (parameter td) from 75 ms to 30 ms.
Step 4. At this final step (see Figs. 1D and 2D), all factors (α), (β), (γ) were

accounted for, because the rate of cross-bridges cycling was increased 10 times as
compared to the previous step. For this purpose, we changed in a suitable manner
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Figure 1. Simulation of the effect of
cardiac muscle heating on LDR reduc-
tion. Panels A÷D: time course of muscle
force generation in isometric and isotonic
regimes. Following factors of the heating
were consistently involved: (α) increase in
the SR Ca pumping rate associated with
an increase in ATP hydrolysis rate (pa-
rameter rCa); (β) reduction of the time
of the Ca transient ascending limb (pa-
rameter td); (γ) increase in cross-bridges
cycling rate (parameters of equation (3)
from Appendix 1). Panel A: simulation
of muscle contraction in its initial condi-
tion, i.e. before heating (basic parameter
values from Appendix 2). Panel B: sim-
ulation of muscle contraction, (α) being
the only factor involved. Panel C: factor
(β) is involved additionally to the previ-
ous one. Panel D: all the factors (α), (β),
(γ) are involved to simulate the effect of
muscle heating on LDR.

the parameters of function qn(l̇1) from equation (3) (see Appendix 1). All the other
parameters had the same values as at Step 3.

The selection of values for parameters td, rCa, and for those of function qn(l̇1)
was driven by the values of Q10 established by Dobrunz and Berman for mechanical
characteristics TR1/2, τ f and T+dF/dt reflecting changes in the molecular mecha-
nisms under investigation caused by heating (increase in the Ca pumping, cross-
bridge cycling and Ca transient rates). Specifically, in choosing values for the above
parameters we sought to keep our simulations of contractions of a heated muscle
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Figure 2. Simulation of the same
muscle shortening and elongation in
the same numerical experiments and
in the same order as shown in panels
of Fig. 1.

within the ranges of variations in characteristics T+dF/dt, TR1/2and τ f reported
by Dobrunz and Berman (Fig. 5 of Dobrunz and Berman 1994).

Thus, in the experiments carried out by Dobrunz and Berman, the value of
T+dF/dt (time-to-peak of dF/dt) varied from 80 ms (± 20 ms) to 25 ms (± 5
ms) (see Fig. 5, Panel (a) of the paper cited) with an increase in temperature
from 24◦C to 37◦C. These ranges of T+dF/dt before and after heating determined
our choice of the corresponding values for parameter td (time-to-peak of the Ca
transient). The choice was correct because a close coincidence of td and T+dF/dt
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has been shown experimentally (Yue 1987). This choice does not change anything
in our point of view explained in Introduction that both td and T+dF/dt are hardly
representative indicators of the entire process of SR Ca handling. Particularly, it
means that to simulate all the changes in Ca handling due to high temperature we
have to separately determine the change of parameter rCa describing the rate of
Ca pumping by SR.

We applied Q10 for TR1/2 as a measure for assessing variation in rCa due to
high temperature. However, it would not be correct to use TR1/2 directly as this
is a mixed indicator reflecting both cross-bridges cycling rate and SR Ca pumping
rate. Therefore, we started from the independent assessment of the variation due to
high temperature in the model parameters determining cross-bridges cycling rate,
and used for this purpose τ f as a direct indicator of this rate. Thereafter, we set
new values of these parameters corresponding to the increased temperature; these
conditions allowed us to find the necessary variation in rCa supplying required Q10
for TR1/2 as compared with the initial state (Step 1) of the numerical experiment.

Our variation of the cross-bridges cycling rate was based on the following
considerations. The model represents average probability n that the cross-bridge
is in an attached position as n = n1 · n2 (functions n1 and n2 are described in
Methods and in Appendix 1). It follows that the rate constant representing the
increase or the decrease in probability n during the twitch is given by:

dn/dt
n
=
dn1/dt

n1
+
dn2/dt

n2
;

i.e. this rate constant is given by the sum of the corresponding rate constants for
probability n1 and probability n2. From the definition of these probabilities we see
that the cross-bridge attachment/detachment process is directly connected with
probability n2 rather than n1. The model should therefore represent the effect of
temperature on the cycling rate as the variation in the rate constant (dn2/dt)/n2
for the purpose of increasing the latter. Namely, the parameters of function qn from
equation (3), Appendix 1 are responsible for the variation in this rate constant.
In accordance with the above formula for the sum of rate constants, an increase in
(dn2/dt)/n2 would bring about an increase, although a non-proportional one, in the
rate constant (dn/dt)/n. This increase, in turn, would have an effect on the increase
in the relaxation rate of the muscle. On the other hand, in accordance with the
experiments carried out by Dobrunz and Berman, raising the temperature of the
muscle from 24◦C to 37◦C should result in τ f (time constant of the final exponential
decay of force from 10% developed isometric peak) decreasing by about a factor
of 8 (see Fig. 5, Panel (c) in the paper cited). Based on this consideration, we
used this Q10 to estimate changes to be made in the parameters of function qn
(describing the rate constant for probability n2) to simulate the behavior of the
muscle at higher temperatures. The numerical experiment shows that an about
eightfold decrease in τ f is achievable by increasing the rate constant (dn2/dt)/n2
by a factor of 10 (See Results). This constant was thus increased in the model using
such a tenfold increase in function qn .
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Finally, we calculated the sought-for parameter rCa change due to high tem-
perature. In Panel (b), Fig. 5 of the above cited paper by Dobrunz and Berman,
TR1/2 (time to half relaxation from peak isometric force) falls from 255 ms (±35
ms) to approximately 35 ms with an increase in temperature from 24◦C to 37◦C.
We therefore chose to vary parameter rCa so that an increase in the Ca pumping
rate ensured the required variation in quantity TR1/2 as compared with the initial
state (see Results). This turned out to be achievable by a fivefold increase in the
baseline value of rCa.

We estimated LDR for each one of six afterloads a1, a2, . . . , a6 simulated in the
above numerical experiments. As a measure of LDR, we used the same characteristic
c/d applied in the experimental work mentioned (Dobrunz and Berman 1994),
where c is the duration of the isotonic phase of the twitch under the given afterload
a, and d is the duration of such part of isometric twitch where the force remains
to be higher than a.

Results

When comparing Figs. 1A and 1B it is seen that factor (α) (i.e. the increase in
the rate of Ca pumping by LSR) results in a considerable decrease in LDR. In fact,
in Fig. 1A the values of the characteristic c/d for afterloads 1/7, 2/7, 3/7 are equal
to: ∼ 0.56, ∼ 0.68, ∼ 0.78, respectively (all the afterloads are normalized by the
maximum active isometric force); whereas in Fig. 1B they are equal to: ∼ 0.73,
∼ 0.84, ∼ 0.89 for the same normalized afterloads.

Furthermore, when both factors (α) and (β) (i.e. the increase in Ca pumping
and reduction of the Ca transient’s ascending limb) are taken into account, we ob-
tain the following values of the characteristic c/d for the corresponding afterloads:
∼ 0.73, ∼ 0.84, ∼ 0.93 (Fig. 1C). This means that in this case, LDR decreases with
respect to the previous one only for afterload 3/7, and this decrease does not seem
to be significant.

Finally, all three factors (α), (β), (γ) reflecting the muscle heating were taken
into account concurrently at the step of our numerical experiment illustrated in
Fig. 1D. The only change with respect to the previous experiment was an increase
in the cross-bridges cycling rate. In this case, c/d for the corresponding afterloads
takes on the following values: ∼ 0.79, ∼ 0.84 and ∼ 0.97. It is seen that LDR
again decreases slightly the afterload 3/7, remaining unchanged for all the other
afterloads.

Characteristics T+dF/dt, TR1/2 and τ f , which were equal to 72 ms, 250 ms
and 300 ms at step 1, are now equal to 28 ms, 40 ms and 30 ms, respectively, i.e.
T+dF/dt is now smaller by a factor of ∼ 3, TR1/2, by ∼ 6.3, and τ f , by ∼ 7.7,
these characteristics thus being within the ranges of the variation reported by
Dobrunz and Berman in the above cited paper. Note that it was not our intention to
quantify muscle contractions based on the data reported by Dobrunz and Berman.
Nevertheless, the values of T+dF/dt, TR1/2 as such (not only those of their Q10) are
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within the range of values reported by these authors (Fig. 5, Dobrunz and Berman
1994).

In addition to the numerical experiment described above we carried out a num-
ber of similar experiments with different “samples of muscles” simulated. In other
words, these experiments were based on other sets of parameter values characteriz-
ing the initial state of a muscle before its heating. In general, we tested 30 “muscle’s
samples”. For every “sample” all necessary changes of the model parameter values
simulating the effect of temperature on LDR were calculated in accordance with
the estimation method described in the previous section. Thus, we considered dif-
ferent magnitudes of changes in the parameters responsible for (α), (β), (γ) for all
these variants, but varying these changes we confined ourselves to those only which
did not take Q10 of characteristics T+dF/dt, TR1/2 and τ f beyond the ranges set
in section Methods. Furthermore, these changes were made in the same manner as
for the basic sample presented in Appendix 2; i.e., factors (α), (β) and (γ) were
made in sequence.

In addition, for all these “muscle samples” we varied all possible sequences of
the heating factors, for instance:

1. {(α)}, then {(α) and (β)}, then {(α) and (β) and (γ)};
2. {(γ)}, then {(β) and (γ)}, then {(α) and (β) and (γ)};
etc.
The ranges of changes in characteristic c/d due to each of the factors (α),

(β), (γ) obtained for the tested “samples” are shown in Table. The change in this
characteristic was estimated as the ratio of its values before and after involving the
corresponding factor.

Table 1. Comparative effects of factors (α), (β), (γ) on the characteristic c/d tested by
means of 30 simulated “muscle samples”.

Normalized Range of c/d changes Range of c/d changes Range of c/d changes
afterload due to factor (α) due to factor (β) due to factor (γ)

1/7 1.25÷1.45 1.0÷1.05 0.88÷1.05
2/7 1.20÷1.30 1.0÷1.04 0.89÷1.03
3/7 1.12÷1.20 1.0÷1.04 0.93÷1.03

All the above numerical experiments without exception confirmed that (α) was
the predominating factor of LDR decrease among those studied. In very few cases,
the contribution of factor (β) to the phenomenon discussed was comparable with
that of (α). At the same time, the increase in the cross-bridges cycling rate (factor
(γ)) has never influenced significantly the LDR decrease. Moreover, the experiment
with the basic parameters as given in Appendix 2 but with another sequence of
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Figure 3. Simulation of the sarcom-
ere shortening and elongation in the
same numerical experiments and in
the same order as shown in panels of
Fig. 2.

involving the factors (namely, {(γ)}, then {(β) and (γ)}, then {(α) and (β) and
(γ)}) showed (see Fig. 4) that when (γ) was involved at step 1, LDR even increased
slightly (c/d for afterloads 1/7, 2/7, 3/7 became equal to: ∼ 0.50, ∼ 0.61, ∼ 0.74,
respectively), and a considerable decrease appeared only at step 3, where (α) was
involved as well.

Among others, we took (as “muscle samples”) such basic sets of parameter
values which provided for a lower level of cooperativity than the basic set presented
in Appendix 2 (the latter corresponds to Panels A in Figs. 1, 2, 3, 4). As shown and
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Figure 4. Simulation of the effect of
cardiac muscle heating on LDR re-
duction (with the same baseline state
but with sequence of involving the fac-
tors different from that illustrated in
Fig. 1). Panels A÷D: time course
of muscle force generation in isomet-
ric and isotonic regimes. Following fac-
tors of the heating were consistently
involved: (γ) increase in cross-bridges
cycling rate (parameters of equation
(3) from Appendix 1); (β) reduction
of the time of the Ca transient ascend-
ing limb (parameter td); (α) increase
in the linear component of the rate of
Ca uptake in LSR (parameter rCa).
Panel A: simulation of muscle con-
tractions in initial condition, i.e. be-
fore heating (basic parameter values
from Appendix 2). Panel B: simula-
tion of muscle contraction, (γ) being
the only factor involved.Panel C: fac-
tor (β) is involved additionally to the
previous one. Panel D: all the factors
(α), (β), (γ) are involved to simulate
the effect of muscle heating on LDR.

analyzed in one of our earlier papers (Izakov et al. 1991), a reduction in the level of
cooperativity does, in itself, lead to a reduction in LDR. Herein we just repeat that
experiment, introducing additionally factors (α), (β), (γ) which simulate heating
against the background of a decreased cooperativity. The introduction of (α), (β),
(γ) resulted in a considerable reduction in LDR, even against initially decreased
cooperativity (hence, against low initial LDR), (α) remaining the dominant factor
in this case as well.

The simulation of the total effect of temperature variations for all the 30



152 Katsnelson et al.

Figure 5. Simulation of the effect of temperature on LDR derived from a series of nu-
merical experiments (n = 30). Values are mean ± sample standard deviation.

“muscle’s samples” is shown in Fig. 5 where data obtained from this series of nu-
merical experiments are summarized. In addition to LDR characteristics simulated
for 24◦C and 37◦C, we also included here a simulation of those for the interme-
diate temperature of 30◦C. Qualitatively, the data very well correspond to those
obtained by Dobrunz and Berman in a series (n = 10) of physiological experiments
(Dobrunz and Berman 1994, Fig. 4). To simulate temperature transition from 24◦C
to 30◦C, we calculated the necessary changes in the values of model parameters in
accordance with the estimation method described in the previous section; i.e., in
this case we again estimated the changes by means of the values of T+dF/dt, TR1/2
and τf for 30◦C, which are also presented in Fig. 5 of the cited paper by Dobrunz
and Berman (1994).

Besides, we show here the influence of temperature on the effect of the magni-
tude of isotonic force on the rate of relaxation. Specifically, Fig. 3A shows how the
length of the sarcomere changes, under initial conditions, in response to different
afterloads, while Fig. 3D shows similar data for the last step of the numerical exper-
iment allowing for all the three factors (α), (β), (γ), i.e. simulating the response of
the muscle to an increase in temperature. In Fig. 3A the maximum rate of sarcom-
ere elongation in “the muscle” undergoing relaxation reaches 2 µm/s for minimum
afterload, and 0.26 µm/s for maximum afterload. The maximum rate of sarcomere
elongation in such a “muscle” (Fig. 3D) is 2.23 µm/s for minimum afterload and to
1.17 µm/s for maximum afterload. Thus, in this numerical experiment simulating
the mechanical behavior of the muscle in response to an increase in temperature,
the above rates after the increase differ less than before the increase.
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Discussion

A number of different mechanisms control muscle mechanical behavior, including
LDR. The mathematical description of all the intracellular links underlying the
mechanisms has been included in the model equations and discussed earlier (Izakov
et al. 1991; Katsnelson and Markhasin 1996). Moreover, in the same works we
studied, with the help of the model, the contribution of these mechanisms to the
LDR phenomenon.

In this paper we deal with a relatively more specific problem using the same
model: we try to clarify the main causes of LDR reduction due to high tempera-
tures. For this purpose we, following Dobrunz and Berman, considered within the
model the principal changes induced by increasing temperature in the intracel-
lular processes responsible for the muscle mechanical behavior. We analyzed the
influence of these changes on LDR. Namely, the following changes were considered:

(α) growth of the rate of Ca pumping in LDR due to the increased rate of
ATP hydrolysis;

(β) enhanced rate of Ca release from the terminal cisterns resulting in an
acceleration of the Ca transient ascending limb;

(γ) increase in the cross-bridges cycling rate.
Undoubtedly, each of these factors (α)÷ (γ) simultaneously influences several

intracellular mechanisms, and through this influence affects LDR in an intricate
manner. For example, factor (γ) inevitably causes changes of the shortening mag-
nitude of the overlap zone length, of the shortening velocity, of the average load on
one cross-bridge, and of the number of cross-bridges. Besides, through the cooper-
ativity mechanisms, this factor changes intracellular Ca kinetics and consequently
influences the time course of free intracellular Ca concentration and Ca handling
processes. Factor (γ) induces these changes both in real muscle and in the modeled
one. Moreover, we have to stress that in the modeled muscle all these changes oc-
cur automatically, when this factor is involved. It goes without saying that specific
influences of factors (α) and (β) on the above six effects also automatically occur
in the modeled muscle after involving these factors in the numerical experiment.
As the influences of each of the factors (α) ÷ (γ) are so complex and diverse, it
would be difficult to predict a priori their final resulting effect on LDR. Numerical
experiments in the mathematical model seem to be the most adequate method for
carrying out this task. Exactly because of this, we analyzed in our numerical ex-
periments both the individual role of the factors (α) ÷ (γ) in LDR and their joint
effect.

As numerical experiments show three factors (α), (β), (γ) reflecting muscle
heating lead altogether to LDR reduction in the model (compare Figs. 1A and
1D), and this is in good agreement with the data from physiological experiments
(Dobrunz and Berman 1994). However, the individual role of each of this factor
seems (at least within the framework of the model) to contradict what was proposed
by Dobrunz and Berman. In particular, when (and if) an increase in the cross-
bridges cycling rate (factor (γ)) caused a decrease in LDR this effect was quite
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small. Moreover, Fig. 4B shows an experiment where LDR even increased slightly
as a result of involving factor (γ). In the meantime, factor (α) (i.e. the increase in
the Ca pumping rate) revealed itself as a major determinant of LDR decrease (and,
perhaps, as the only relevant one). In fact, all the numerical experiments pointed
to factor (α) as being the predominating one. In very few numerical experiments
the role of factor (β) was comparable with that of (α). Anyway, both these factors
have a bearing to the increase in SR activity, while on the contrary, the increase
in the cross-bridges cycling rate (factor (γ)) has never influenced significantly the
LDR decrease.

The data from physiological experiments conducted by Dobrunz and Berman
(1994) allowed them to conclude that the cross-bridges cycling rate increased more
significantly than the rate of Ca uptake after muscle heating. Therefore, it was
reasonable to follow the same in simulating the effect of heating: in our numerical
experiments we also used a higher increase in the cross-bridges cycling rate than in
the Ca uptake rate. The model studies show that this higher increase in the cross-
bridges cycling rate is not as important a determinant of the decrease in LDR as the
relatively smaller but nevertheless considerable increase in the Ca pumping rate.
This fact does not seem to be surprising because the heart muscle is an essentially
non-linear system.

There is one much more valuable divergence between these data and the idea
of Dobrunz and Berman we showed in Introduction. Indeed, these authors believed
that Ca pumping acceleration, by itself, always induces just an increase in LDR.
From such a point of view a prevailing influence of the pumping acceleration as
compared with acceleration of cross-bridges cycling would directly contradict the
observed effect of LDR reduction due to high temperature. However, we already
have argued that this viewpoint on the role of Ca pumping acceleration is not
correct in general (see Introduction). Our numerical experiment confirmed this
criticism.

Thus, the model shows that an increase in the rate of Ca pumping may lead to
LDR reduction. It is the point of a principal importance that this is such an increase
which is realized here as an increase in the rate of the Ca pump’s ATP hydrolysis.
Let us compare this result with the result of our previous paper (Katsnelson and
Markhasin 1996), where the same model successfully simulated LDR disappearance,
due on the contrary, to slowed-down Ca pumping by the LSR. However, in that
work we revealed that this effect only results from a slow-down which is caused
by enhanced tendency of Ca uptake inhibition. In terms of our model it means
that, for LDR to disappear, an increase in the value of parameter qCa, rather
than a decrease in rCa was the cause of the Ca uptake slow-down. Reversing this
property of the pump we have to conclude that its acceleration due to decrease in
the value of parameter qCa would lead, by itself, to enhanced LDR rather than to
LDR reduction.

That is why we propose here the following concept: one, and only one type of
the increase in the Ca pumping rate of the two possible ones leads to LDR reduc-
tion, and just this, an increase due to acceleration of ATP hydrolysis, presumably
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takes place when the temperature is increased. The second type, increase due to
weakened pump inhibition, would lead to an increase rather than a decrease in
LDR. Therefore, the second kind barely would take place when the temperature is
increased. Below, we are discussing this concept in detail.

Thus, the model analysis shows that changes in Ca pump properties affect
LDR in an intricate manner. This influence is not monotonous (in the mathematical
sense): both an increase and a decrease in the rate of pumping may result in LDR
reduction due to a specific mechanism responsible, in either case, for this change in
the rate. In our previous work we have already discussed the mechanism connected
with the enhanced tendency of Ca uptake inhibition (Katsnelson and Markhasin
1996). Later on in this section, we shall repeat some aspects of this discussion; but
now we start by analyzing our new results.

We shall clarify how the increase in parameter rCa, which characterizes the
uptake capacity of the Ca pump for uninhibited calcium ATPase units, influences
LDR reduction as this influence was shown to take place in our numerical experi-
ments.

First of all, as the model analysis shows, the phenomenon of LDR as such is a
result of the peculiarities of isotonic rather than isometric twitches. Moreover, the
phase of isotonic contraction predetermines LDR to a large extent. In fact, the more
significant shortening of muscle sarcomeres in isotonic contraction as compared
to isometric one results (due to type 1 cooperativity) in an additional decay of
CaTn. Afterwards, not only does this difference reveal itself as a different start
level of CaTn concentration at the beginning of relaxation, but it also influences
the rate of dissociation of these complexes during the following phase of isotonic
relaxation. This is so because both the instantaneous sarcomere length (due to
type 1 cooperativity) and the instantaneous CaTn concentration (due to type 2
cooperativity) influence this dissociation not only instantly but afterwards as well.
Furthermore, the smaller the level of CaTn in isotonic relaxation the smaller the
level of muscle activation and, consequently, the faster the relaxation phase. It is to
the point to stress here that in any twitch at the beginning of relaxation the level
of CaTn is far from zero. This conclusion results even from the estimation of the
CaTn course proposed by Peterson et al. (1991). Moreover, the estimate made by
these authors seems to underestimate the real CaTn course because these authors
tried to estimate the CaTn concentration at several moments of the twitch using
the method of muscle short-time deformations. Such a procedure inevitably caused
a considerable additional decay of CaTn. Thus, it seems probable that the muscle
has to sustain a sufficiently high level of CaTn in the process of its relaxation
essentially longer than the estimate by Peterson et al. We think the level predicted
by our model might be more realistic (Katsnelson and Markhasin 1996).

So, we conclude that the difference in the shortening of the contractile element
at the end of the contraction phase, between isotonic (under various afterloads)
and isometric regimes, dramatically influences the time course of CaTn during the
relaxation phases in these regimes, and results in LDR.

Evidently, we can conclude that any factor contributing to the diminution of
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that difference is thereby directed at decreasing LDR. Factor (α) is just one of these.
Let us compare Figs. 2A and 2B which show the time course of muscle shorten-

ing in the initial step of our numerical experiment (Fig. 2A) and after rCa increase
(Fig. 2B). In the first case, the shortening is much larger than in the second one.
The reason for this difference is clear: increased Ca uptake by the LSR (whereas all
the other parameters are left unchanged, that of inhibition (qCa) included) leads to
the attenuation of the muscle’s capability to shorten in the second case. It explains
the LDR reduction observed in the model as a result of the increase in Ca pump
capacity (for uninhibited calcium ATPase units).

The contribution of each of the factors (α), (β), (γ) to the above difference
in contractile element shortenings between isotonic (under various afterloads) and
isometric regimes is even more evident if we look at Fig. 3 illustrating the internal
shortening of the sarcomere for the same contractions as shown in Figs. 1 and 2.
As in the previous Figures, the sequence of Panels 3B, 3C, 3D corresponds to that
of including factors (α), (β), (γ) in this experiment. In Fig. 3A, corresponding to
the initial step of the experiment, the difference in sarcomere shortening between
the isometric and isotonic regimes under minimal load is 0.12 µm (2.06 µm − 1.94
µm). The introduction of factor (α) reduces this difference to 0.04 µm (2.08 µm −
2.04 µm). The introduction of factor (β) results in the same difference (2.12 µm −
2.08 µm). Finally, the introduction of factor (γ) reduces it to 0.02 µm (2.11 µm −
2.09 µm). Thus, the introduction of factor (α) results in the greatest difference.

It is clear that any reduction in the difference in sarcomere shortening between
isometric contraction and isotonic twitches is a circumstance which always supports
the decrease in the difference in Ca activation between the isometric and isotonic
mode. However, we have to stress that in some cases the influence of this circum-
stance on the Ca activation may be either partially or even entirely overwhelmed
by another counteracting effect on the same activation which occurs in parallel
and may be due to the same factors. Indeed, exactly this would appear, if the Ca
pumping acceleration were caused by a decrease in its inhibition constant (parame-
ter qCa) rather than by an increase in ATP hydrolysis rate (parameter rCa). In that
case, the pointed difference in sarcomere shortening between isometric and isotonic
modes would also decrease due to accelerated Ca pumping, but on the other hand,
the same decrease in the pumping inhibition would entirely compensate for the in-
fluence of this circumstance. Below in this section, we will analyze this important
mechanism in detail, but now we start our further discussion from the analysis of
the case of increased rCa , involved as factor (α) in the above described numerical
experiments. As these experiments showed there was no compensating effect in this
case. Therefore, a decrease in the above difference in sarcomere shortening due to
factor (α) does lead to the final decrease in difference in Ca activation between
isometric and isotonic mode, and this leads to LDR reduction.

We have to point out the following detail. As the numerical experiment pre-
sented in Figs. 1, 2, 3 reveals, sarcomere shortenings in isometric and isotonic
contractions are very close. Indeed, the difference between end-systolic lengths in
these contractions is about 0.04 µm, i.e. ∼ 2% of the initial sarcomere length. As
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a result LDR disappears almost entirely in this numerical experiment. Exactly the
same, almost complete LDR disappearance due to high temperature was observed
in real physiological experiments (Dobrunz and Berman 1994).

However, Dobrunz and Berman did not measure internal sarcomere shortening
in their experiments. Therefore, it may be asked whether or not this closeness of
end-systolic sarcomere lengths in our numerical experiment actually reflects reality.
If not, it would mean that our explanation of the temperature effect on LDR was
but an artifact of the model. Probably, it is not so, and the above features of end-
systolic sarcomere lengths are realistic. Let us pay attention to Fig. 6E to explain
the cause of the close lengths obtained in the numerical experiment. This Figure
shows how the elastic force of the series element in the model depends on the value
of this element stretching. This particular dependence corresponds to the parameter
values as shown in Appendix 2; i.e. the dependence was chosen to simulate just such
a series elasticity which is specific for real physiological experiments in myocardial
strips (see the reasoning in Appendix 2). This elasticity is mainly determined by
the fastened ends of the muscle sample. It is typical that such a series elastic
element is highly compliant within the range of relatively small applied forces (see
Fig. 6E), but the element stiffness steeply increases with a further increase in force.
Taking into account this peculiarity of the series elasticity, let us consider the effect
of factor (α) on the sarcomere shortening during both isometric contraction and
isotonic twitch. First of all, factor (α) decreases the level of intracellular Ca2+; i.e.
it leads to a decrease in muscle contractility (DMC). In isotonic twitches, this DMC
manifests itself as an increase in the sarcomere end-systolic lengths as it is seen from
Panel B of Fig. 3 compared with Panel A. In particular, under minimal afterload
1/7, the sarcomere shortened to 1.94 µm at the initial step of the experiment (Panel
A) vs. 2.08 µm produced by DMC due to factor (α) involving (Panel B).

On the other hand, isometric shortening of the sarcomere is always entirely
determined by two (and only two) causes: the isometric force amplitude and the
internal compliance of the series elastic element. Therefore, to understand the effect
of the same DMC on isometric sarcomere shortening in the numerical experiment,
we have to consider how this DMC changes the amplitude of the isometric force
and how the series element translates this change of the amplitude into the change
of the end-systolic isometric sarcomere length.

Comparing panels A and B in Fig. 1, we see that DMC manifests itself in
isometric contraction as the fall of the peak force from 68 mN/mm2 (Panel A) to
42 mN/mm2 (Panel B). In Fig. 6E, the upper dotted horizontal line corresponds
to the force value of to 68 mN/mm2 and the lower dotted horizontal line to that of
42 mN/mm2. It is seen from this Figure, that the first force (68 mN/mm2) applied
to the series element produces its lengthening by 0.18 µm, and the second one (42
mN/mm2) produces series element lengthening by 0.16 µm. In isometric conditions,
the sum of the sarcomere length and the length of the series element always remains
unchanged during the contraction-relaxation cycle. In our numerical experiment,
this sum was 2.24 µm. Evidently, this fact exactly determined the isometric end-
systolic sarcomere shortening in this experiment. Namely, the isometric peak force
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Figure 6. Simulation of the effect of the increase in rCa (factor (α)) on a muscle sample
with a high series stiffness (α1 = 21.0 µm−1, β1 = 40 mN/mm2). Panels A and B
illustrate the muscle sample contractions in isometric and isotonic modes before involving
factor (α). Panels C and D illustrate the same with factor (α) involved. Panel E:
Dependence of the series element stiffness on its length for the basic parameter values of
the model: α1 = 13.3 µm−1, β1 = 6.4 mN/mm2.

of 68 mN/mm2 produced a sarcomere shortening to 2.24 µm – 0.18 µm = 2.06 µm,
whereas the isometric peak force of 42 mN/mm2 produced a sarcomere shortening
to 2.24 µm – 0.16 µm = 2.08 µm. Hence, in the case of a realistically modeled
series elasticity for experiments in heart muscle strips, despite the great decrease
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in isometric peak force due to increased rate of Ca pumping (parameter rCa), the
corresponding change of the internal sarcomere shortening turned out to be very
small. At the same time, as already mentioned, an increase in rCa manifested itself
in isotonic contractions as a considerable decrease in the magnitude of sarcomere
shortening. As a result, the end-systolic sarcomere lengths in isometric and isotonic
contractions were so close after involving factor (α): 2.08 µm – 2.06 µm = 0.02
µm vs. 2.06 µm – 1.98 µm = 0.08 µm. Thus, our analysis shows that the non-
linearity of the series elastic element in our numerical experiment was responsible
for this strong effect of factor (α) with respect to muscle shortenings in isometric
and isotonic conditions. The parameters of the series element, in turn, chosen for
the numerical experiment were in accordance with the properties of the muscle
strips’ fastened ends typical of the real physiological experiments. Therefore, it
should be expected that in such real experiments factor (α) (i.e. acceleration of
ATP hydrolysis in the SR Ca pump) must yield the same close values of sarcomere
shortenings during isometric and isotonic contractions.

One more conclusion may be drawn from the above reasoning: the properties
of the series elastic element influence the effect of temperature on LDR. Therefore,
the following questions arise. How does this effect depend on the degree of the
series element’s stiffness? How does this effect manifest itself in the intact heart,
where compliance of the series elastic element is very small? In answering these
questions, we have to note that internal sarcomere shortening during isometric
contraction obviously must decrease due to the increase in the stiffness of the
series element. And, even more, this must apply to both normal Ca pumping and
pumping accelerated due to factor (α). Hence, differences in end-systolic lengths
between isometric and isotonic contraction must be larger in this case both for
initial conditions as compared to the baseline (Fig. 3A), and for conditions of
factor (α) being involved as compared to the baseline (Fig. 3B). This means that,
in the case of a more stiff series elastic element, LDR must be larger both for initial
conditions as compared to the baseline (Fig. 1A), and after involving factor (α) as
compared to the baseline (Fig. 1B).

Nevertheless, in the case of a more stiff series element factor (α) as such would
also lead to some LDR reduction because of the same reasons as described for
the usual, sufficiently compliant, series element. Thus, if the series element were
more stiff, the involving of factor (α) would also result in LDR reduction; in this
case, however, LDR would not almost disappear unlike in the case of the series
element corresponding to the muscle strips’ fastened ends. In Fig. 6, we show the
results of a numerical experiment which thoroughly confirms the last statement.
In this experiment, values of the stiffness coefficients α1, β1 were taken equal to
4.0 µm−1 and 210 mN/mm2 instead of those presented in Appendix 2. The tension
time-courses in isometric and isotonic modes before involving factor (α) are shown
in Panel 6A, and those after involving factor (α) in Panel 6B. The values of the
characteristic c/d for afterloads 1/7, 2/7, 3/7 change here from ∼ 0.47, 0.62, 0.75
to ∼ 0.58, 0.69, 0.84, respectively; i.e. LDR considerably drops due to factor (α)
indeed, though it is far from LDR disappearance. Our conclusion that higher series
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stiffness by itself increases LDR fits well with the observations of Donald et al.
(1980). These authors were able to arrange the course of the muscle contraction so
that the length of a controlled central muscle segment during the isometric phase
of any contraction-relaxation cycle was constant. Such a method enabled them to
eliminate the effect of the fastened ends compliance for the isometric phase of any
contraction-relaxation cycle. This elimination corresponds to a much stiffer series
elastic element than in the case of a fixed length of the whole muscle strip. These
authors have shown that the elimination resulted in several changes, an increase in
LDR included.

Let us note that the data of the numerical experiment represented in Fig. 6
make us suggest one more particular conclusion of a serious practical importance:
the LDR phenomenon is to be operational for intact heart functioning in normal
temperature conditions. This conclusion seems probable despite the cited experi-
ments of Dobrunz and Berman who showed that LDR almost disappeared in rat,
when the temperature became normal, physiological (37◦C). In fact, the series stiff-
ness in the intact heart myocardium is much higher than in experiments of Dobrunz
and Berman dealing with myocardial strips in vitro. Therefore, it is likely that for
the intact heart performance in the organism at 37◦C LDR should take place, as
this is shown in Fig. 6B.

Now let us come back to the central point of our concept, i. e. to the statement
concerning the predominating role of the intracellular calcium kinetics in different
aspects of the LDR phenomenon, and particularly in the LDR reduction due to high
temperature. This role is often masked because of a very complicated manner of its
manifestations. First of all, it is related to the correlation between the change of the
Ca transient and the change of the LDR level. For instance, Dobrunz and Berman
(1994) state that Ca transient acceleration by itself always produces an increase
in LDR. From our viewpoint it is not always so, because the experimental data
we already have cited in Introduction (Chemla et al. 1986) revealed an example of
the opposite situation. However, this example would hardly make us state that the
shorter the time of the Ca transient and the lower the level of Ca activation, the
less marked the LDR. Of course, such a statement would be incorrect as well. Our
point of view on this subject is as follows.

Neither acceleration nor a slowing down of Ca activation due to some influence
on the muscle is a real cause for LDR increase. The cause is a change that this
influence produces in the difference between CaTn concentration in the isometric
vs. isotonic mode. If this difference becomes smaller, LDR decreases. An increase
in this difference in general may occur in parallel with either a total increase in Ca
activation or a total decrease in it. And vice versa, if this difference becomes larger,
LDR will increase despite the total decrease or total increase of Ca activation.

Let us illustrate this statement with the help of Figs. 7 and 8, where the data
of the numerical experiment published earlier (Katsnelson and Markhasin 1996)
are reproduced. These Figures show data of two numerical simulations by means
of the same mathematical model used in the present paper. The data include time
courses of the muscle force, shortening, CaTn concentration, and Ca transient.
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Figure 7.Modeling load-depen-
dent relaxation of the heart mus-
cle at qCa = 50. Panel A: mus-
cle force generation in isomet-
ric (top trace) and in several
isotonic (lower traces) contrac-
tions. Panel B: muscle shorten-
ing corresponding to these iso-
tonic contractions: the less the
after-load, the greater the short-
ening. Panel C: I – group of
traces representing the course of
CaTn concentration during the
respective contractions. A lesser
after-load results in visible inac-
tivation of the process of CaTn
association. II – group of traces
representing the course of Ca
binding with the buffer system
in the same series of contrac-
tions. Panel D: Ca-transients
corresponding to this series of
contractions. The shortest Ca-
transient corresponds to the iso-
metric contraction, and in gen-
eral, the less the after-load, the
longer the Ca-transient. The da-
ta have been published elsewhere
(Katsnelson and Markhasin 1996).

The only difference between the conditions of those two simulations was in values
of parameter qCa :qCa = 50 for Fig. 7 vs. qCa = 200 for Fig. 8; i.e. inhibition of the
SR Ca pump was stronger for the simulation shown in Fig. 8 as compared to that
in Fig. 7.

When comparing panels 7C and 8C as well as 7D and 8D it is seen that the total
level of Ca activation is higher for the case corresponding to qCa = 200. However,
at the same time there are much more significantly expressed differences between
isometric CaTn curve and isotonic CaTn curves in panel 7C as compared to the
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Figure 8. Modeling the dis-
appearance of load-dependence
for qCa = 50. Unlike the pro-
cesses shown in Fig. 7, here a
lesser after-load results in a much
more significant slowing down
of the Ca-transient (Panel D),
whereas inactivation of the CaTn
association process is negligible.
Moreover, after 200 ms (Panel
C) an inverse pattern of the de-
pendence of CaTn concentration
on after-loads is seen. As a result,
load-dependent relaxation disap-
pears (Panel A). The data have
been published elsewhere (Kat-
snelson and Markhasin 1996).

respective differences in panel 8C. LDR is seen in panel 7A but totally disappears
in panel 8A.

To explain this result it is necessary to clarify how exactly the increase in SR
Ca pump inhibition was manifested in the numerical experiments. On the one hand,
the increase resulted in a total increase in muscle activation. This, in turn, caused
more shortening in isotonic twitches, as can be seen in panel 8B vs. panel 7B. As
already stressed, the constant of the CaTn dissociation permanently depends on
the instantaneous muscle length through the cooperativity mechanisms. Hence, the
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rate of CaTn dissociation in isotonic twitches became higher after increasing the
inhibition constant (qCa = 200) compared to isotonic twitches for the initial value
of this constant (qCa = 50). Let us take ∆CaF (t) as the additional amount of Ca

2+

which is dropped from CaTn at moment t in isotonic twitch under normalized
afterload F as compared with the amount thrown from CaTn in the isometric
mode at the same moment t. As it follows from the above, when qCa = 200, then
for any normalized afterload F and any moment t the instantaneous magnitude
will be larger than qCa = 50. However, this additional Ca2+, for qCa = 200 will
be taken up by the SR Ca pump slowlier than at qCa = 50. In other words, for
qCa = 200 this additional Ca2+ will be subsequently associated with TnC with a
higher probability than for qCa = 50. This circumstance explains why the differences
between isometric and isotonic time courses of [CaTn] almost disappear in panel
8C. Moreover, for the minimum afterload shown in panel 8C the descending limb of
[CaTn] proved to be even slower than for the isometric mode, whereas in panel 7C
the corresponding descending limb for the minimum afterload just on the contrary
forestalled isometric one. That is why an increase in inhibition of the SR Ca pump
results in LDR disappearance, although the total level of Ca activation becomes
higher due to this increase. Thus, the model analysis predicts that:
LDR depends non-monotonously (in the mathematical sense) on the rate of

Ca pumping by LSR; i.e. LDR may diminish as a result of both an increase and a
decrease in that rate, in accordance with the specific reasons causing these changes.
In particular, LDR reduction results from both of the following changes:
– a decrease in the rate caused by enhanced Ca pumps inhibition (parameter

qCa);
– an increase in the rate due to the growth of ATP hydrolysis rate for the

uninhibited calcium ATPase units in the SR pump (parameter rCa).
We think that the concept proposed in this work follows logically from our

study. Indeed:
(I) on the one hand, neither an increase in cross-bridges cycling nor an increase

in Ca pumping rate associated with a reduction in pumping inhibition resulted in
the numerical experiments in a significant decrease in LDR (moreover, reduced
inhibition as such resulted in a marked increase in LDR);

(II) on the other hand, another variant of Ca pumping rate increase, namely an
increase in ATP hydrolysis rate, resulted in our numerical experiment in a decrease
in LDR;

(III) in reality, LDR does significantly decrease with the increasing tempera-
ture as shown in physiological experiments by Dobrunz and Berman;

(IV) in reality, either the first or the second variant of the increase in Ca
pumping rate should occur as well, because the rate actually increased due to
increased temperature as shown in the same physiological experiments.

Comparing these four considerations it is clear to conclude (at least within the
framework of the model) that if variant (II) of the increase in Ca pumping rate
(increase in ATP hydrolysis rate) did not occur at the temperature increase, LDR
reduction due to increased temperature would not occur at all. In other words, the
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Figure 9. Simulation of the time courses of Ca concentration in the SR vesicles in dif-
ferent conditions. Bottom panel. Curve (1): C1(t), the time course of Ca concentration
corresponding to the Ca pump basic parameter values. Curve (2): C2(t), the time course
of Ca concentration corresponding to the following conditions: parameter rCa value (i.e.
the rate of ATP hydrolysis in the pump) is 2 times the basic one; parameter qCa has the
basic value. Curve (3): C3(t), the time course of Ca concentration corresponding to the
following conditions: parameter qCa value (i.e. the level of the pump inhibition) is half the
basic one; parameter rCa has the basic value. Top panel illustrates the same time courses
1, 2, 3 but in the normalized forms C1(t)/C1(t), C2(t)/C1(t), C3(t)/C1(t), respectively.

latter variant of the Ca pumping rate increase seems to occur when temperature
increases. This is but a hypothesis, of course, and we do not claim it to be more than
this. Certainly, our suggestion that variant (II) occurs when temperature increases
needs further experimental testing.

The question then arises whether it would be possible to design a biochem-
ical experiment which can help to test this. To try and answer this question we
simulated in the mathematical model the uptake of Ca by CR vesicles placed in
a solution of constant concentration [Cas] = 2 µmol/l. The initial concentration
[Cao] in the vesicles was assumed to be 0.01 mmol/l. In this simulation, we used an
equation for Ca pumping inhibited by intravesicular Ca. The upper panel in Fig. 9
shows:

– curve 1: C1(t) simulates the time course of the increase in calcium concen-
tration in the vesicles for the basic values of the inhibition constant q1Ca and ATP
hydrolysis rate constant r1Ca;
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– curve 2: C2(t) simulates the time course of the increase in Ca concentration
in the vesicles for the same basic value of r1Ca but for a reduced (compared with
the basic value) inhibition constant q2Ca = 0.5 · q1Ca.

– curve 3: C3(t) simulates the time course of the increase in Ca concentration
in the vesicles for basic inhibition constant q1Ca, but an increased ATP hydrolysis
rate (r2Ca = 2r1Ca).

C1(t) corresponds to the initial (basic) pumping characteristic; C2(t) corre-
sponds to the pump taking up calcium faster than initially owing to reduced inhi-
bition; C3(t) corresponds to the pump taking up calcium faster than initially owing
to increased ATP hydrolysis. The lower panel in Fig. 9 shows curves for the ratios
C2(t)/C1(t) (curve 2) and C3(t)/C1(t) (curve 3).

A comparison of C1(t), C2(t) and C3(t) shows that both methods of increas-
ing the pumping rates (C2(t) and C3(t)) lead to an increase in Ca concentration
in the vesicles at any point of time as compared with the initial state C1(t), but
it is rather difficult to find qualitative differences between curves C2(t) and C3(t).
However, weighting C2(t) and C3(t) for the initial state C1(t) at each moment of
time shows an important difference: the ratio C2(t)/C1(t) is a monotonously in-
creasing function, whereas the ratio C3(t)/C1(t) has a marked peak at about the
very beginning of the uptake process followed by a monotonous decay. This differ-
ence is not an accidental consequence of a fortunate choice of parameter values.
We proved strictly a mathematical theorem stating that this qualitative difference
between C2(t)/C1(t) and C3(t)/C1(t) is invariable with respect to changes in all
the parameters: [Cas], [Cao], q1Ca, q2Ca (provided q2Ca < q1Ca), r1Ca, r2Ca (pro-
vided r2Ca > r1Ca). We do not think it appropriate to present the strict proof of
the theorem here because this is not a mathematical journal. At the same time
one important conclusion follows from this theorem: the difference between the
ratios C2(t)/C1(t) and C3(t)/C1(t) can serve as a criterion applicable to any im-
pact (including changes in temperature) on the muscle resulting in an increase in
Ca uptake rate. This criterion enables to distinguish which of the two possible
a priori variants (decrease in Ca pump inhibition or increase in ATP hydroly-
sis rate) underlies the above effect. Thus, in what follows we are suggesting a
biochemical experiment with SR vesicles to provide an insight into which of the
mechanisms increasing the Ca uptake rate comes into play when the temperature is
increased. Two populations of vesicles are to be taken from a normal myocardium
and the vesicles are to be loaded with calcium at two different temperatures T o1
and T o2 (T

o
2 > T o1 ) while recording the concentrations of intravesicular calcium

Ca1(t) (at temperature T o1 ) and Ca2(t) (at temperature T o2 ). The ratio Z(t) =
Ca1(t)/Ca2(t) should provide an answer to the question raised, namely if Z(t)
grows monotonously (within the range of non-saturating concentrations of calcium
in the vesicles), this will provide evidence in favor of the hypothesis that inhibition
reduces with heating. On the contrary, if Z(t) has a marked peak at the initial
stage of the Ca uptake process in the vesicles followed by a decrease, this will pro-
vide evidence that an increase in the Ca uptake rate in response to an increase
in temperature is caused by growth in the pump’s ATP hydrolysis rate. In other
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words, this experiment would enable to confirm or to deny the main hypothesis of
our work.

Appendix 1

Complete set of differential equations of the model

In their final (suitable for calculations) form the model equations are as follows:

λ · p(l̇1) · Aµ
1 · n2 · n1(l1) · (l1 + S0) = β1 · [exp(α1 · (l2 − l1)− 1] (1)

Ȧ1 = c1 ·Ca(t) · (1 − A1)− c20 · exp(−qk · A1) ·Π(n1(l1) · n2) · A1 (2)

ṅ2 = qn(l̇1) · [m(0) · G∗(l̇1)− n2] (3)

Ċaf =

{
4ac ·Cam · t · [1− exp(−ac · t2)], when t < td
−A1 − B − rCa · exp(−qCa · Caf) ·Caf , when t ≥ td

(4)

Ḃ = bon · (Bs − B) · Caf − boff · B (5)

In isometric conditions one equation is added to the above ones, namely: l̇2 = 0.
In isotonic conditions it is replaced by the condition of constancy of the to-

tal afterload D on the sum of serial and parallel elements exhibiting exponential
stiffness:

β1 · [exp(α1 · (l2 − l1)] + β2 · [exp(α2 · l2)− 1] = D (= constant)

The latter equality can be differentiated in order to reduce this case to a set of
differential equations as well.

The force of the contractile element depends on the other model’s character-
istics as follows:

PCE = λ · p(l̇1) · Aµ
1 · n2 · n1(l1) · (l1 + S0)

Thus, the model presents a set of six differential equations with respect to six
variables:

l1 – length of the muscle contractile element;
l2 – muscle length;
A1 – CaTn concentration;
n2 – average probability of a cross-bridge attaching itself to a vacant site

“found” on the actin filament;
Caf – intracellular free calcium concentration;
B – concentration of calcium buffered by intracellular buffer system.
Other symbols are used in the equations in two cases:
(1) for variables which are expressed via these indicated six ones with the

help of explicit functional dependencies (for instance, n1(l1) is the probability of
a myosin cross-bridge “finding” a vacant site on the actin filament; p(l̇1) is the
average force of an attached cross-bridge; and qn(l̇1) is responsible for the average
rate constant of a cross-bridge attachment – detachment);
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(2) for constants which are model parameters (for instance, λ, c1, c20, bon, boff ,
α1, β1, α2, β2, rCa , qCa, etc.).

Appendix 2

What follows is a list of the basic model parameters. The main part of the parameter
values has been taken from our previous works (Izakov et al. 1991; Katsnelson and
Markhasin 1996).

α1 = 13.3 µm−1

β1 = 6.4 mN/mm2

α2 = 14.6 µm−1

β2 = 0.0048 mN/mm2

λ = 350 (mN/mm2)/µm
µ = 1.7
S0 = 1.14 µm
bon = 2 ms−1

boff = 0.14 ms−1

Bs = 0.4

Ac = 0.001 ms−2

Cam = 0.03
Td = 70 ms
c1 = 2.73 ms−1

c20 = 0.6 ms−1

Πmin = 0.02
qk = 3.2
rCa = 0.7 ms−1

qCa = 40

Parameters α1 and β1 are the exponential and the linear coefficient of the series
elastic element, respectively. The characteristics of series elasticity were obtained
in a fast muscle release experiment (Parmley and Sonnenblick 1967).

Parameters α2 and β2 are the exponential and the linear coefficient of the par-
allel elastic element, i.e. characteristics of passive stiffness of the myocardium. We
estimated the values of these coefficients based on our own numerous experiments
in rat papillary muscles (Markhasin et al. 1997).

λ is the scaler translating the force of one sarcomere into the force of the
filament. We selected values for λ so as to provide (for predetermined values of
series elasticity α2 and β2) a ratio between the amplitude of isometric tension and
passive force that would fall within the ranges observed for Lmax. The basic value
of λ meets this condition (See, for instance, Fig. 1, Panel A).
S0 is an absolute term in the linear dependence of overlap zone on sarcomere

length S0 calculated on the basis of the classical data on the characteristic sizes of
thick and thin filaments and overlap zone obtained by optical methods (Gordon et
al. 1966).
Bs, bon, boff are kinetic characteristics of the generalized intracellular Ca buffer.

The values of these characteristics were obtained in a separate work of ours based
on data on calcium binding ligands found by other authors in experiments in single
cardiomyocites (Sipido and Wier 1991). This mathematical analysis and its re-
sults (numerical values of the above characteristics for the generalized buffer) were
published by us elsewhere (Solovyova et al. 1997).

Parameters ac, Cam, td refer to the upward phase of the Ca transient. We set
this phase with the help of an explicit function borrowed from the model suggested
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by Panerai (1980) and modified insignificantly. In this case, the value of coefficient
ac was chosen so as to ensure a steep increase in intracellular Ca concentration up
to td, the time to peak of the Ca transient. The value of td = 70 ms was chosen
because it falls within the range of values for the Ca transient peak time at 24◦C
as estimated by Dobrunz and Berman (1994) by measuring the value of T+dF/dt

in mechanical twitches.
Cam is the amplitude of the Ca transient, for convenience expressed in the

model as a dimensionless quantity in fractions of concentration TnC in the cell (di-
mensionless in the model are also all the instantaneous values of the concentrations
Ca, CaTn and Ca-buffer ligands). The dimensionless value Cam = 0.03 given in
the list of the basic values if expressed in micromols is equal to 2 µmol/l, which is
somewhat higher than that calculated by Sipido and Wier based on experiments
using Fura-2 fluorescence (Sipido and Wier 1991). In the experiments conducted by
these authors maximum intracellular Ca concentrations varied from ∼ 1 µmol/l to
∼ 1.5 µmol/l. However, we took into account that the Fura-2 fluorescence marker
used in those experiments is an additional calcium-binding buffer not available in
the cell in natural conditions, which means that the natural concentration of free
intracellular Ca will be somewhat higher than that observed in experiments with
Fura-2.
c1 is the CaTn complex binding rate, while c20 is a coefficient appearing in their

decay constant (see Appendix 1, Equation (2)). Constant c1 is made dimensionless
in the same manner as quantity Cam. In dimensional concentrations it is equal to
39 × 106 M−1 ·s−1 , which is in agreement with data reported by Fabiato (1983).
The value of c20 was chosen so that the range of changes in the decay constant in
twitches (taking into account the cooperativity mechanisms) included the interval
230 ÷ 350 s−1. We borrowed this reference interval from the data of biochemical
experiments in solution (Wang and Leavis 1988).

Parameters µ, Πmin, qk refer to the formula describing the cooperativity mech-
anisms. Grounds for the introduction of these mechanisms into the model and the
choice of the relevant parameter values were provided in our earlier studies (Kat-
snelson et al. 1990; Izakov et al. 1991; Katsnelson and Markhasin 1996).

Parameters rCa, qCa appear in the formula describing the Ca pump of the SR,
where rCa is a linear coefficient while qCa is an exponential one. The meaning of
these parameters has been discussed in detail above. The choice of a corresponding
formula to describe the Ca pump in the model was discussed in our preceding paper
(Katsnelson and Markhasin 1996). The basic values of parameters rCa, qCa were
chosen so as to bring Ca pumping rates in the model in good agreement with the
experimental data reported by Haynes and Mandveno (1987).
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