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Temporal Pa t te rns Recognized by a Network 
of Coordinated Time Delays and Coincidence Detectors 

J. PAVLÁSEK 

Institute of Normal and Pathological Physiology, 
Slovak Academy of Sciences, Bratislava, Slovakia 

Abstract. A computational model of a neuronal network is described which per­
forms a fundamental task of general perception: recognition of temporal patterns in 
continuous and uncued neuronal spike trains. The presented network is able to rec­
ognize each pattern element (100 ms interval composed of sets of 10, 20, 30 and 40 
ms interspike intervals combined in linear order) as it arrives. Its operation is based 
upon biologically plausible filtering mechanisms and population neúrody namies. 
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Introduction 

Any higher organism of the animal kingdom faces an important task - extracting 
information about an unknown time-dependent stimulus from segments of a spike 
train. The fundamental problem of general perception is how can a neural network 
identify a specific temporal pattern within the continuous stream of pulsatile input 
activity. It is evident that the recognition task should be connected with functional 
changes in a set of elements over time which can be used to define pattern. Some 
ideas originating in both experimental and computational biology advocate the 
assumption that possible recognizing mechanisms should comprise an "assignment 
clock" to label stimulus event as having occurred at a particular point in time (Port 
et al. 1995). 

In the present work, temporal pattern recognition is based upon transition of 
an interval code to the activity of an ensemble of spatially distributed elements 
(population code, place-cell code) with their responses scattered in time. As sim­
ulation experiments have shown, the devised model network by itself figures out 
a specific pattern (process of segmentation) (Ghosh and Deuser 1995) without its 
start and end being cued. 
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M a t e r i a l s and M e t h o d s 

Model neuron (neuroid) JASTAP has been described in detail elsewhere (Jančo et 
al. 1994; Pavlásek 1997, 1998). It obeys the principles concerning the physiology 
of a biologically realistic neuron with chemical transmission of information. The 
computer program J A S T A P can define a network by simple command language 
and simulates its activity in discrete t ime intervals (0.5 ms steps). Samples of 
simulated activity are presented in the form of intracellular recordings. 

R e s u l t s 

The temporal pa t te rn was defined as a limited set of different interspike inter­
vals combined in linear order. The devised recognizing network computes the con­
stituents of a pat tern (interspike intervals) and consequently identifies the whole 
pat tern as it arrives; the conversion of the time history (an interval code) t o propa­
gated responses of the intervals recognizing and pattern recognizing neuroids (place-

Figure 1. A network recognizing temporal pattern. A. A model network consisting of 
7 model neurons (neuroids 0-6) and one input (in). Connections marked by bars (dots) 
are excitatory (inhibitory); the crosses indicate subthreshold excitatory influence. The 
neuroids in frames represent two micronetworks performing the function of the interval 
recognizers for 10 ms (IRi) and 40 ms (IR4) intervals. The afferent activity delays (di -
dy) are in ms (numbers in the brackets). There are two (three) afferents to neuroid 3 (5). 
B. In the upper part there is a raster display of the spikes (SP) (vertical bars) arriving 
in the network (part A) via the input (in); except the first and second interspike interval 
(7.5 ms and 17.5 ms) all others are 10, 20, 30 and 40 ms long (the arrows indicate 40 ms 
intervals). In the lower part there is simulation of intracellular^ recorded postsynaptic 
potentials - PSPs (neuroid 6, part A). The eight horizontal lines above the simulated 
recordings represent possible synaptic inputs and the small vertical bars superimposed 
on them indicate SPs arriving in the synaptic ending (active inputs are marked by short 
horizontal bars on the right-hand side). The dotted horizontal line is the threshold level 
for SP generation (vertical bars on the simulated recordings). The dash-dot-dot horizontal 
line represents resting transmembrane potential; upward (downward) deflections simulate 
excitatory (inhibitory) PSPs. Abscissa, simulation time in milliseconds; ordinate, simula­
tion of the transmembrane potential in millivolts providing an approximate range of PSP 
and SP amplitudes in a biologically realistic neuron. C. Simplified schematic illustration 
of four interval recognizers for 10 (IRi), 20 (IR2), 30 (IR3) and 40 ms (IR4) intervals con­
nected via delay lines (di - d4) with a pattern recognizer (PR). Numbers in the brackets 
are delays in ms. Plus signs indicate the excitatory influence. D. Four pathways origi­
nating from (IRi) - (IR4) with delays (di - d,i) (see part C) make synaptic connections 
with a neuroid performing function of the PR. Each path excites the indicated neuroid 
with subthreshold intensity (crosses), therefore the propagated response (SP) is set up 
only when spatio-temporal summation of all four excitatory PSPs occurs. E. The raster 
display of the SPs (vertical bars) arriving via the input (in) in the network (part A); the 
pattern consisting of four interspike intervals (30, 10, 40 and 20 ms, horizontal bar) is 
part of a larger spike train. F. The pattern illustrated in E evokes propagated response 
(SP) of the PR neuroid (presented in part D); other symbols as in B. 
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cell code) occurs. In the presented simulation experiments each specific temporal 
pattern is identified by a particular pattern-recognizing neuron. 

The devised network is of hierarchical structure. An interval recognizer (IR) 
is a building block at the input level (Fig. 1A). The structural and functional 
constituents of the IR are simple: the core structure is one neuroid supplied with 
an input ramified into two parallel paths (divergence), both making synaptic con­
tacts with the indicated neuroid (convergence). The afferent activity spreads with 
a longer delay in one branch (delay line). Each path excites the indicated neuroid 
with subthreshold intensity, therefore the propagated spike is set up only when 
temporal summation of both excitatory influences occurs (coincidence detection). 
Thus, the delay together with the mechanism of coincidence detection determine 
the duration of the recognized interspike interval. Delays of 10, 20, 30 and 40 ms 
were used in the presented simulation experiments. The micronetwork indicated 
above with a specific delay (e.g. 40 ms) does not detect only "pure" interval (40 
ms) but also combinations of shorter consecutive intervals the sum of which equals 
40 ms (e.g. 10+10+10+10, 10+30). Therefore, the IRs for detection of 20, 30 and 
40 ms intervals were equipped with inhibitory neuroids (feedforward inhibition) 
(Fig. 1.4), which eliminate the influence of all combinations of shorter intervals. 
Fig. IB illustrates the responses of the IR which detects 40 ms intervals in a con­
tinuous flow of the afferent pulsatile activity. In technical terms, such IR represents 
a frequency filter tuned to 25 Hz frequency. 

According to the adopted time-pattern definition (see above) the pattern rec­
ognizer (PR neuroid) forming the next level has to detect a set of different interspike 
intervals combined in a linear order. In the illustrated simulation experiments the 
pattern duration equaled 100 ms interval. The structure of the PR is shown in 
Fig. 1C,D. The information from several IRs (four in this case) is transmitted in 
parallel pathways which converge on one PR neuroid; the activity in individual 
paths is conveyed with different delays (delay lines). Each path excites the indi­
cated neuroid with subthreshold intensity, therefore the propagated spike in this 
PR neuroid is set up only when spatio-temporal summation of all excitatory postsy­
naptic potentials (EPSPs) occurs (coincidence detection). The illustrated temporal 
pattern used for the simulation experiment (Fig. IE) was "hidden" within a con­
tinuous stream of spiking activity (for instance a "noise") with 10, 20, 30, 40 ms 
intervals. It was composed of five spikes (the temporal sequence of four intervals 
was 30, 10, 40 and 20 ms). In order to secure temporal summation of all EPSPs 
constituting this pattern, the second spike delineating its first interval (30 ms, IR3) 
has to "wait" for the last spike of the whole pattern for 70 ms (achieved by 70 
ms delay) (Fig. 1C). The propagated response of the PR neuroid was generated 
with a monosynaptic delay after the last spike of the whole pattern arrived. As 
is evident, the pattern was recognized without its start and end being cued with 
special signals (Fig. IF) . 
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Discussion 

All of an organism's knowledge comes from monitoring of the activity of its own 
neurons (analog signals and temporal patterns of propagated spikes); processing 
of time intervals (Pavlásek et al. 1996) as well as frequency change recognition 
(Krai and Majernik 1996) with neural networks is an unavoidable prerequisite for 
triggering an adequate response. How can the temporal structure of a pattern be 
extracted out of a continuous spike stream? A variety of different statistical mea­
sures have been proposed but mathematics is not natural to elementary neural 
circuits. It is reasonable to suppose that common computational primitives are in­
volved in low level sensory processing which compute some special features very 
quickly. "Real-time" processing of interspike intervals must be accomplished at an 
early stage in the system before timing precision is lost (Casseday and Covery 
1995). At next stages it may be translated into a different code that is resistant to 
degradation across synapses (population code, coded lines) (Konishi 1990). This 
"bottom-up" processing (with no descending feedback connections) could be done 
by separate modules performing selective filter operations (Rose 1995). The filter­
ing mechanism implemented in the model network is very simple: the anatomical 
constituents are represented by divergence, parallel lines and convergence; the func­
tional constituents comprise delay lines, coincidence detection (see also Krai and 
Majernik 1996) and feedforward inhibition. Temporal intervals are represented by 
responses in an ensemble of spatially specified neuroids (IRs) (population code). 
A pattern consisting of a set of intervals occurring in a given time relationship 
can be recognized at the next stage by a processing system which uses delay scat­
ter and again coincidence detection. Time delays in parallel lines are organized in 
such a way that spikes generated by IR neuroids which transmit information about 
recognized intervals, although occurring at different times (successive processing), 
arrive simultaneously at a PR neuroid which then gives a propagated response. 
Thus, information about a recognized pattern is encoded in the activity of a neu­
ronal throng. The pattern itself represents an "access code" (no cueing is necessary) 
and pattern recognition taking place through activation of PR neuroids eliminates 
the necessity of special "search processes". The time window (100 ms) and the 
lengths of the interspike intervals used in simulation experiments (10, 20, 30, 40 
ms) limited the number of disjunctive coverings (distinct patterns) to 401; there is 
a progressive increase of their number with the interval prolongation. 

Distinct streams of processing project through several stages of the brain­
stem in diverging and converging ways. It is well known that variable signal delays 
(synaptic, axonal, cellular) along neuronal pathways are omnipresent in the brain 
(Nowak and Bullier 1997). Computation is not only distributed across the network, 
but also across time (Longuet-Higgins 1969). Numbers of cells receiving convergent 
inputs (heterotopic, multimodal) increase in the upward direction (Brooks 1969). 
A frequent feature is that some of them react more strongly to the same tempo­
ral sequence (response specificity) (Barlow 1969); such clearly "tuned" cells (Rose 
1995) could play a role of "sequence detectors" or "sequence recognizers" (Granger 
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et al 1995) Increasingly fewer impulses are t ransmitted, but in more numerous 
fibers. It can be supposed t h a t par t of the purpose of the brainstem circuitry is t o 
create a system of coded lines, delay lines and t o establish mechanisms for coin­
cidence detection (Casseday and Covery 1995; Hopfield 1995; Král and Majernik 
1996; Pavlásek et al. 1996). 

The model network presented herein is able to t reat pat terns t h a t extend over 
t ime and to recognize each pat te rn element as it arrives. Its operation is based 
upon biologically plausible filtering mechanisms and population neurodynamics 
T h e results of simulation experiments indicate how form creates function; that is, 
how synaptic connectivity and cellular properties lead to processing algorithms 
performing identification of temporal patterns. 
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