The Role of Adenylate Cyclase in Ischemic Preconditioning in the Rat Heart: A Cytochemical Study

Ľ Okruhhcová, T Ravingerová, D Pancza, N Tribulová and R Štetka

Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic

Abstract. Using catalytic cytochemistry the AC activity was studied during ischemic preconditioning (IP) (5 min occlusion of LAD and 10 min reperfusion) followed by 30 min regional ischemia in isolated Langendorff-perfused rat heart. In controls the specific precipitate of AC reaction was found on the sarcolemma (SL) and the junctional sarcoplasmic reticulum (JSR) of cardiomyocytes. After prolonged ischemia the reaction product was absent, whereas IP followed by prolonged ischemia protected the AC activity on SL and JSR. IP-induced enhancement of AC activity in this model was accompanied by significant reduction of ischemia/reperfusion fibrillation. The results suggest involvement of AC system in mechanisms of IP.
Key words: Adenylate cyclase — Ischemic preconditioning — Rat — Heart

It is known that the exposure of the heart to one or few episodes of transient myocardial ischemia reduces the extent of the myocardial injury in a subsequent prolonged ischemia. This phenomenon is known as ischemic preconditioning (IP) (Murry *et al.* 1986, Liu and Downey 1992) and is associated with a decrease in cellular damage as well as in life-threatening arrhythmias. Several studies suggest a role of catecholamines and adrenergic activation of α1-adrenergic receptors in the cardioprotective effect of IP (Banerjee *et al.* 1993, Ravingerová *et al.* 1997). Whether β-adrenoceptor/adenylate cyclase system (AC) (EC 4.6.1.1) stimulated by catecholamines is also implicated in the mechanism of the protection induced by IP has not been fully elucidated. Therefore, the aim of the present study was to examine the effect of IP on AC activity and its distribution in rat myocardium using cytochemical approach. The latter enables to detect the enzyme activity in situ in the myocardial tissue.

For this purpose, the rat hearts were perfused (Langendorff preparation) at a constant flow of 10 ml/min with Krebs-Henseleit solution and subjected to: 1) IP (a single 5 min occlusion of LAD and 10 min reperfusion), 2) regional ischemia (30 min occlusion of LAD) and 3) IP followed by 30 min ischemia. During experiment the heart rate was continuously monitored and incidence of arrhythmias was classified according Lambeth Conventions (Walker *et al.* 1988).

At the end of experiment the hearts were perfusion fixed with 1% glutaraldehyde and the tissue pieces from the ischemic left ventricle were processed for the cytochemistry of AC (Schulze *et al.* 1978). Ultrathin unstained sections were analyzed in EM Tesla 500. Cytochemistry of AC. In control hearts the reaction product of AC activity was found on the sarcolemma and on the junctional sarcoplasmic reticulum. The same localization of the specific precipitate was observed after IP itself and IP followed by prolonged ischemia. However, the variability in the intensity of the electron dense precipitate was observed in each experimental group (Table 1). The strongest precipitation of the reaction product was observed after lone IP. After 30 min ischemia the precipitate was absent, whereas in preconditioned heart followed by prolonged ischemia the precipitate was found on the sarcolemma and even more on the junctional sarcoplasmic reticulum.

Table 1. Localization and intensity of the specific product of the AC reaction in rat cardiomyocytes

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>30' Isch</th>
<th>IP</th>
<th>IP + 30' Isch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcolemma</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>JSR</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Incidence of arrhythmias It has been demonstrated that both, incidence and duration of sustained ischemia-induced ventricular tachycardia (VT) and ventricular fibrillation (VF) were significantly attenuated after IP at the rat heart. In the ischemic group, 30 min occlusion of LAD induced 100% and 67% incidence of VT and VF, respectively. In the IP group, incidence of VT and VF were significantly reduced to 17% and 0%, respectively (*p < 0.01*).

In the present study we demonstrated the protective effect of IP on AC applying in situ method. The enzyme activity was demonstrated on the subcellular membrane.
structures directly involved in the regulation of intracellular Ca homeostasis and thus the contraction-relaxation processes and the intercellular communication, too (de Mello 1988). It is well-known that mentioned processes are modulated by cAMP. It is also known that the AC activity and cAMP levels differ in normal and ischemic myocardium (Krause et al. 1978, Okruhhcová et al. 1988, Tribulova et al. 1998) and reflect the increased local catecholamine release (Schomig 1984). Despite of the fact that increased sympathetic activity and catecholamine release might be arrhythmogenic in ischemia and reperfusion, it has been suggested that short lasting effect of catecholamines can be antiarrhythmic (Ravingerova et al. 1997). A few studies refer to the contribution of the β-adrenoceptor/AC system in the cardioprotection of IP against posts ischemic myocardial dysfunction (Nasa et al. 1997). The protection of cAMP levels during IP may be due to several factors, for example ischemia-induced dual sensitization of the β-adrenergic system (Strasser et al. 1989), inhibition of phosphodiesterases (Lochner et al. 1997) or IP-induced reduction of norepinephrine release in the heart. The results of the present study indicate that AC can be involved in the cardioprotective effect of IP in the rat heart.

Acknowledgements. This work was supported by the grant No 1001 from the Slovak Academy of Sciences and in part, by the EU COST grant CIPA CT 92 4009

References

Banerjee A., Locke-Winter C., Rogers K.B. (1993) Preconditioning against myocardial dysfunction after ischemia and reperfusion by an α1-adrenergic mechanism Circ Res 73, 656—670

Detection of Cytoskeletal Proteins in Small Cell Lung Carcinoma

M Hložánková1, Z Lukáš2 and V Víklíčký3

1 Exbio s r o , Olomouc, Czech Republic
2 2nd Department of Pathology, Children Faculty Hospital, Brno, Czech Republic
3 Institute of Molecular Genetics, Praha, Czech Republic

Abstract. Small cell lung carcinoma (SCLC) is the most aggressive of lung tumors, metastasize widely and are virtually incurable by surgical means Therefore, the classification of lung cancer into SCLC and non-small cell lung carcinoma is essential for disease prognosis and treatment

For this purpose we have compared the immunohistochemical distribution of different cytoskeletal proteins as tumor markers Analysis was performed by using of monoclonal antibodies directed against cytokeratins, neurofilaments, βIII-tubulin, epithelial membrane antigen and neuron-specific enolase. Our results indicate that keratin and epithelial membrane antigen are reliable epithelial markers for SCLC In addition, the positive staining with monoclonal antibodies TU-20 against βIII-tubulin and neuron-specific enolase was found in some cases of SCLC We suggest, that these antibodies could be a useful tool for complex immunohistochemical diagnosis of SCLC

Introduction

Small cell lung carcinoma (SCLC) is a clinicopathologically distinct form of pulmonary carcinoma characterized by specific morphological, ultrastructural, biochemical and cytogenetic markers. Ultrastructurally, a few dense-core neurosecretory-type granules were found in about 80% of the SCLC cells. The granules are similar to those found in the APUD (Kultchitsky’s) cells of the lung, which are originally supposed to be of ectodermal neural crest origin (de Leij et al 1985). According to the other hypothesis, SCLC originates in primitive cells of the basal bronchial epithelium, which in the process of neoplastic change undergoes partial differentiation towards neuroendocrine cells. Immunohistochemically, the positivity of SCLC for keratin was described, often simultaneously with the neural markers such as neurofilaments, Leu-7, chromogranin, synaptophysin and neuron-specific enolase (Guinee et al 1994). In this study, we have used a monoclonal