The concentration of conjugated dienes (CD), often used as an indirect marker for the production of free oxygen radicals, increased by 141% (from 91 to 218 nmol) after calculation per gram of tissue (Table 1). However, evaluation of CD concentration directly in phospholipids revealed no change, suggesting that phospholipids in cardiac tissue after L-NAME treatment were not damaged additionally, by increased level of free oxygen radicals. The increase of the CD concentration in the cardiac tissue is therefore a consequence of the elevated phospholipid concentration.

Acknowledgements. The present study was supported by the Slovak Grant Agency (grants No 4044 and 4100)

References
Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951) Protein measurement with the folin phenol reagent J Biol Chem 193, 265—275
Pečaňova O, Bernatová I, Pelouch V, Šimko F (1997) Protein remodeling in NO deficient hypertension The effect of captopril J Mol Cell Cardiol 29, 3365—3374

Hypokalemia-Induced Ultrastructural, Histochemical and Connexin-43 Alterations Resulting in Atrial and Ventricular Fibrillations

N TRIBULOVA¹, M MANOACH³, D VARON³, L OKRUBLICOVÁ¹, Z SLOBODOVÁ², L KUBOVČáKOVÁ²

1 Institute for Heart Research, Slovak Academy of Sciences, Bratislava
2 Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
3 Department of Physiology, Sackler School of Medicine, Tel Aviv, Israel

Abstract. Perfusion of the isolated guinea pig heart with hypokalemic solution provide simple model for examination of the molecular mechanisms involved in the incidence
of atrial and/or ventricular fibrillations. The results point out that dispersion of the metabolic and subcellular alterations and heterogeneously impaired intercellular coupling might account for electrical disturbances and desynchronization of the myocardium thus facilitate occurrence of fibrillation.

Key words: Hypokalemia — Histochemistry — Ultrastructure — Connexin 43 — Atrial and ventricular fibrillations

Hypokalemia is a common medical condition occurring during the treatment of the hypertension and is known to have serious consequences resulting in electro-mechanical disturbances of the heart (Steeness and Olesen 1976). Taken into consideration that dietary sodium intake is very high and that the use of thiazide diuretics when dietary sodium is not restricted commonly produces potassium losses (Anderson et al. 1991), the occurrence of hypokalemia is potentially enormous. Moreover, hypokalemia is frequently associated with cardiovascular, gastrointestinal, urogenital diseases (Janko et al. 1992) and transient hypokalemia can be induced by increase of catecholamines (Seek et al. 1996) as well as by exercise.

The understanding how hypokalemia affects cardiac metabolism, structure and function is still incomplete, although these conditions are associated with a high risk for arrhythmias, such atrial and ventricular fibrillations (Friedensohn et al. 1991, Miletich et al. 1997). Reduction in serum K⁺ influences myocardial excitability by increasing of the membrane potential, diastolic depolarization, duration of action potential and refractory period and by decreasing of conduction velocity (Akita et al. 1998). The arrhythmogenic potential of hypokalemia is thought to result from electrical inhomogeneity, alterations in conduction, changes in automaticity and disturbances in Na pump kinetics (Wong et al. 1993).

To elucidate more the low kálium related alterations of the myocardium leading to arrhythmias, the aim of this study was to examine the vulnerability of the isolated guinea pig heart to hypokalemia-induced atrial and/or ventricular fibrillations and to analyze the involvement of the ultrastructure, histochemistry and connexin-43 protein in the initiation of these arrhythmias.

The experiments were performed on the hearts of young (n = 6), adult (n = 8) and old (n = 6) guinea pigs of both sexes. Animals were sacrificed by stunning followed by carotid exsanguination and the aorta of excised heart was immediately cannulated for perfusion with crystalloid 37°C Tyrode solution oxygenated by 95% O₂ & 5% CO₂ at the pressure of 70 mm Hg. After 15 min stabilization with standard solution (2.8 mmol/l K⁺) the heart was perfused with K⁺ deficient (1.4 mmol/l) ones. Bipolar epicardial electrocardiograms from the left atria and ventricle were continuously monitored. The atrial and/or ventricular tissue for electronmicroscopic, histochemical and connexin-43 (gap junction channel protein involved in electrical coupling) examination were taken during hypokalemic perfusion, at the onset of fibrillation as well as 15 min after incidence of fibrillation. Subcellular alterations were evaluated in randomly chosen transmural myocardial samples. The histochemical enzyme activities of α-glucan phosphorylase, succinm dehydrogenase, β-hydroxybutyrate dehydrogenase (involved in energetic metabolism) and 5-nucleotidase (involved in cell membrane function) as well as immunoreaction of connexin-43 (using monoclonal mouse anticonnexin-43 Ab and FITC goat antimouse IgG, Zymed lab Inc.) were performed on the cryostat sections.
Results and Discussion

The findings revealed that in our model sustained atrial and ventricular fibrillations appeared in each heart during 15–30 min of hypokalemic perfusion, independent on the age and sex. These fibrillations were irreversible and sustained after reintroduction of standard solution. In other animal models and in the human, hypokalemia is associated particularly with polymorphic tachycardia, Torsade de Pointes (Lazzara et al 1993), which often degenerate into fibrillation (Chew and Ong 1993).

Hypokalemia induced inhomogeneity of the myocardial changes. They were characterized by disseminated areas of decreased enzyme activities, by heterogeneously diminished or absent immunopositivity of connexin-43 and by heterogeneously distributed ischemia-like subcellular alterations of the cardiomyocytes in the atrial or ventricular tissue. The alterations consisted of mitochondrial injury of various degree, electronlucent nuclei, moderate cytoplasmic edema and nonuniform pattern of sarcomeres with occurrence of hypercontraction of myofibers and sporadically even contraction bands. This feature of the injury was observed in our previous studies dealing with either ischemia-related arrhythmias (Tribulova et al 1993, Ravingerova et al 1995) or electrically-induced atrial or ventricular fibrillations (Manoach et al 1987, Tribulova et al 1999). It points out a close relationship between heterogeneously injured, but still viable cardiomyocytes and occurrence of fibrillations.

Hypokalemia, similar like in previous models, caused focal ultrastructural impairment of intercellular connections that coincided with diminished immunostaining of gap junction protein connexin-43. This strongly indicates disturbances in intercellular communication and in electrical, metabolic and mechanical couplings as well as spatial dispersion of alterations throughout myocardium. These alterations resulted in desynchronization of contraction-relaxation process which was manifested by variations in the pattern of myofibres.

The hypothesis and pilot studies related to structure-function relationship and occurrence of fibrillations were performed by Manoach et al (1987). Today it is more and more accepted that disturbances in intercellular couplings are highly arrhythmogenic and gap junctions might be fundamental structural substrate involved in incidence of malignant arrhythmias (Severs et al 1994, Peters et al 1997). Subcellular and connexin-43 alterations correlate with histochemical findings of heterogeneously decreased activities of the enzymes involved in myocardial energy production. This is in accordance with marked decline of ATP observed by others (Peterson et al 1995). Reversibly and irreversibly altered cardiomyocytes clearly indicate disturbances in electromechanical coupling and synchronisation of the myocardium. These changes should precede apparent ion disbalance resulting in electrophysiological instability of the heart. Available data suggest that hypokalemia decrease Na,K-ATPase activity and potassium efflux (Wong et al 1993) which in turn increases cytoplasmic free calcium via Na/Ca exchanger (Shapiro et al 1998). Excess of Ca^{2+} inhibits intercellular coupling at the gap junctions as well as provokes spontaneous Ca^{2+} release from the sarcoplasmic reticulum. Both conditions favor precipitation of arrhythmias and fibrillation. Furthermore, tachyarrhythmias and fibrillation themselves aggravate already existing ion, metabolic and structural alterations and cause persistence of arrhythmias.

Summarizing these data we suggest that dispersion of myocardial alterations, particularly at the intercellular junctions might account for disturbances in electrical coupling and synchronisation and consequently facilitate fibrillation.
References

Manoach M, Varon D, Neuman M, Erez M (1987) Spontaneous termination and initiation of ventricular fibrillation as a function of heart size, age, autonomic autoregulation and drugs: A comparative study on different species of different age Heart Vessels Suppl 2, 1—68

Miletich D J, Minshall R D, Albrecht R F (1997) The influence of chronic hypokalemia on myocardial adrenergic receptor densities enhanced sensitivity to epinephrine induced arrhythmias Anesth Analg 84, 734—739

Peters N S, Coromilas J, Severs N J, Wit A L (1997) Disturbed connexin 43 gap junction distribution correlates with location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia Circulation 95, 988—996

Stenberg E, Olesen K H (1976) Cardiac arrhythmias induced by hypokalemia and potassium loss during maintenance digoxin therapy Brit Heart J 38, 167—172

