Tension-Ca\(^{2+}\) Concentration Relationship in Chemically Skinned Vascular Smooth Muscle of the Frog

C V Sobol and V P Nesterov

Sechenov Institute of Evolutionary Physiology and Biochemistry
RAS, Thorez pr 44 194223 St Petersburg Russia

Abstract. Vascular smooth muscle of the frog was skinned by 0.2 mg/ml saponin for 20 min. The skinned preparations activated by Ca\(^{2+}\), at 2 mmol/l Mg\(^{2+}\) and MgATP\(^{2-}\), gave half maximal force at Ca\(^{2+}\) = (1.32 ± 0.07) \times 10^{-6} \text{ mol/l} and maximal force at Ca\(^{2+}\) = 3.16 \times 10^{-5} \text{ mol/l} (35 ± 4% of the maximal contraction induced by KCl in living smooth muscles). The Hill coefficient was 1.51 ± 0.11. Thus, the skinned vascular smooth muscle of the frog has Ca\(^{2+}\) sensitivity similar to that of various preparations from a variety of muscle types, the slope of the tension-pCa curve obtained was similar to that typical of mammalian smooth muscles.

Key words: Skinned smooth muscle — Tension-pCa curve — Ca\(^{2+}\) sensitivity

Skinned muscle model has proved to be very useful to study functions of the contractile proteins and other intracellular organelles. Various mechanically or chemically skinned muscle types are still used (Natori 1954, Saida and Nonomura 1978, Godt and Lindley 1982, etc). However, skinned vascular smooth muscles of the frog are not widely used in contrast to skeletal frog muscles.

The present study was conducted to investigate the relation between Ca\(^{2+}\) concentration and isometric tension produced by chemically skinned vascular smooth muscle (subclavian vein) of the frog.

Male Rana temporana frogs were used in the study. The preparation of the subclavian vein, the recording of mechanical activity and the composition of the saline solution for living smooth muscle were similar to those described previously (Sobol 1995).

Experimental protocol. After the response to high KCl (110 mmol/l) was obtained, the muscles were incubated for 20 min in relaxing solution containing 0.2 mg/ml saponin (Sysoev and Sobol 1987) and subsequently washed with the...
relaxing solution composed of (in mmol/l) \(\text{MgCl}_2, 4 (\text{Mg}^{2+}), 2), \text{Na}_2\text{ATP}, 2 \text{A} (\text{MgATP}^{2-}), 2), \text{K}_2\text{EGTA}, 2, \text{KOH}, 20, \text{Tris/maleate}, 20/10, \text{and KCl}, 80 \) so that the ionic strength was 130 mmol/l, pH 6.9 at 20 °C The free concentrations of ions are shown in the brackets The tension-pCa relationship was obtained by cumulative application of activating solutions which were prepared by varying the \(\text{K}_2\text{CaEGTA}/\text{K}_2\text{EGTA} \) ratio (prepared with \(\text{CaCO}_3 \), EGTA and KOH, according to Ashley and Moisescu (1977), total EGTA=2 mmol/l) The exact methods for calculating free ionic concentrations and the binding constants used have been described by Fabiato and Fabiato (1979), and Godt and Lindley (1982) Only one complete set of cumulative additions of \(\text{Ca}^{2+} \) concentrations (from low to high) was done with each preparation

Calcium-induced tension The rate of development \(\text{Ca}^{2+} \)-induced isometric tension in the skinned smooth muscle was slower than that of isometric tension induced by \(\text{KCl} \) (110 mmol/l) in intact muscle It is a well known effect which is mainly due to greater calcium diffusion in skinned muscles (Moisescu and Thieleczek 1978) The maximum amplitude of contraction evoked by \(3 \times 10^{-5} \) mol/l \(\text{Ca}^{2+} \) in skinned smooth muscles was 35±4\% (range 27 to 51\%, \(n = 5 \)) of the maximal contraction induced by \(\text{KCl} \) in living smooth muscles For various types of smooth muscles this value ranges from 20 to 90\% (see Ainer 1982 for references), generally exceeding 60\% The low value of \(\text{Ca}^{2+} \)-induced isometric tension produced by skinned frog vein may be due to the low concentration of \(\text{MgATP}^{2-} \) used

Relationship between tension and \(\text{Ca}^{2+} \) concentration (pCa) The data points were fitted with the Hill equation

\[
\frac{P}{P_0} = \frac{[\text{Ca}^{2+}]^h}{(K^h + [\text{Ca}^{2+}]^h)}
\] (1)

where \(K \) and \(h \) represent the dissociation constant (the \(EC_{50} \) value for \(\text{Ca}^{2+} \)) and the Hill coefficient (the slope of the curve), respectively, and \(\frac{P}{P_0} \) is the relative isometric tension normalized to the contraction evoked by \(3 \times 10^{-5} \) mol/l \(\text{Ca}^{2+} \) To find \(K \) and \(h \) the Sigma Plot curve fitter (Marquardt-Levenberg algorithm for least squares estimation of non-linear parameters) was used All data are presented as means ± S E

Relative isometric tension was plotted against pCa in Fig 1 for five experiments at 20°C The relationship between tension and pCa is S-shaped, a finding which has been reported previously by many investigators (e.g. Saida and Nonomura 1978, Iino 1981, Ainer 1982, Fujiwara et al. 1988)

The minimum concentration of \(\text{Ca}^{2+} \) for detectable tension development was between 1 and \(2 \times 10^{-7} \) mol/l, and maximum contraction was obtained by the application of \(3 \times 10^{-5} \) mol/l \(\text{Ca}^{2+} \) \(K \) and \(h \) values for \(\text{Ca}^{2+} \)-induced contraction were \((1.32 \pm 0.07) \times 10^{-6} \) mol/l \((10^{-5} \pm 88) \) and \(1.51 \pm 0.11 \) \((n = 5)\) respectively.
Figure 1. Steady tension developed by skinned subclavian vein of the frog, plotted against pCa (pCa=-log[Ca$^{2+}$]) Temperature 20°C The curve was smoothed using Sigma Plot cubic spline interpolation

The value of K can be compared with those obtained by Fujiwara et al (1988) for rabbit airway smooth muscle ($K = 10^{-6.05}$ mol/l, derived from their Fig 8, temperature not indicated), Saida and Nonomura (1978), and Ino (1981) for guinea-pig taenia caeci ($K = 10^{-5.85}$ mol/l, at $t = 20$°C, and $10^{-6.27}$ mol/l, at $t = 25$°C, respectively, values were derived from their Fig 4) Moreover, the value of K presented herein is similar to those reported by Godt and Lindley (1982) and Isac et al (1988) for frog skeletal muscle (semitendinosus), being 1.63×10^{-6} mol/l ($10^{-5.79}$) at 22°C ($Rana$ pipiens) and $10^{-5.21}$ at 20°C ($Rana$ esculenta) Interestingly, Schereck et al (1993) reported the same values of pK for rat (gracilis) and human (quadriceps) skeletal muscles, being $5.88-6.01$ and $5.70-5.85$ at 20°C, respectively

Finally, the slope of the tension-pCa curve for the frog vascular smooth muscle is generally similar to that reported for mammalian smooth muscles (Saida and Nonomura 1978, Ino 1981, Fujiwara et al 1988), and is less steep than that for skinned skeletal muscles as indicated by a greater h-value for the latter (Julian and Moss 1981, Godt and Lindley 1982, Schereck et al 1993)

Thus, the Ca$^{2+}$-sensitivity of skinned vascular smooth muscle of the frog is similar to that of various preparations from a variety of muscle types, and the slope of the tension-pCa curve similar to that which is typical of mammalian smooth muscles

References

Arner A (1982) Mechanical characteristics of chemically skinned guinea-pig taenia colh Pflugers Arch 395, 277—284
Ashley C C, Moisescu D G (1977) Effects of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils J Physiol (London) 270, 627—652
Fabio A, Fabiato F (1979) Calculator programs for computing the composition of the solution containing multiple metals and ligands used for experiments in skinned muscle cells J Physiology (Paris) 75, 463—505
Moisescu D G, Thieleczek R (1978) Calcium and stroncium concentration changes within preparations following a change in the external bathing solution J Physiol (London) 275, 241—262
Saida K, Nonomura Y (1978) Characteristics of Ca$^{2+}$- and Mg$^{2+}$-induced tension development in chemically skinned smooth muscle fibers J Gen Physiol 72, 1—14
Sobol C V (1995) Mechanisms of vasoconstriction induced in frog vascular smooth muscle by MD1, a new biotechnological agent Gen Physiol Biophys 14, 293—303

Final version accepted June 16, 1997