Stimulation-dependent Redistribution of Charge Movement Between Unavailable and Available States

K Stroffeckova* and J A Heiny

Department of Molecular and Cellular Physiology
University of Cincinnati College of Medicine
Cincinnati, USA

Abstract. A previous study (Stroffeckova and Heiny 1997) demonstrated that changes in resting, intracellular free Ca\(^{2+}\) can modulate the amount of charge which is available to move upon depolarization and do excitation-contraction-coupling (E-C coupling). Charge movement reflects voltage-driven conformational changes of the dihydropyridine receptor which couple membrane excitation to Ca\(^{2+}\) release from the sarcoplasmic reticulum (SR) and contractile activation (cf review Melzer et al 1995) The present study demonstrates that dynamic changes in free Ca\(^{2+}\) that occur in the triadic gap during SR Ca\(^{2+}\) release can likewise produce a stimulation-dependent increase in the amount of available charge. Thus this modulation occurs in the physiological range of Ca\(^{2+}\) changes that occur in the triad during normal muscle activity. The modulation of charge movement by intracellular Ca\(^{2+}\) was rapid and maintained, it occurred within 2–3 suprathreshold depolarizations and remained for 5–10 minutes. It could be prevented by intracellular BAPTA and by depleting the SR of Ca\(^{2+}\) but not by EGTA or agents known to alter ion channel phosphorylation. These results are explained by a model in which a Ca\(^{2+}\) binding site on or near the voltage-sensor is normally populated by Ca\(^{2+}\) ions released into the triadic junction during activity and modulates the distribution of voltage sensors between available and unavailable states.

Key words: Excitation-contraction coupling – Skeletal muscle – Charge movement

Introduction

In a previous report (Stroffeckova and Heiny 1997) we proposed that a Ca\(^{2+}\) binding
site on an internal domain of the skeletal muscle dihydropyridine receptor, termed
the ‘availability site’, can modulate the amount of charge available to move upon
depolarization. The charge that moves upon depolarization represents the charge
available to do excitation-contraction coupling (Melzer et al. 1995). Charge move­
ment reflects voltage-driven conformational changes of the dihydropyridine receptor
which couple membrane excitation to Ca\(^{2+}\) release from the SR and contractile ac­
tivation (cf review Melzer et al. 1995). Based on the greater ability of BAPTA
compared with EGTA to buffer Ca\(^{2+}\) at this site we concluded that this site is
normally populated by a local Ca\(^{2+}\) pool within the triad junction.

In cut fibers this site is not normally populated at rest because intracellular
Ca\(^{2+}\) is buffered to pCa < 9. However, when resting Ca\(^{2+}\) was raised to physio­
logical resting levels of pCa 7 and above, more charge became available to move
upon depolarization. The steepest increase in charge occurred over the range pCa
7 to pCa 6.5, near the threshold for contraction. This finding suggests that the
postulated site functions in the range of physiological triadic Ca\(^{2+}\) changes during
normal muscle activity.

In the present study we investigated whether dynamic Ca\(^{2+}\) changes in the
triadic gap during Ca\(^{2+}\) release from the SR can modulate the maximum amount
of charge by this mechanism. We found that repetitive suprathreshold depola­
risations were able to increase the maximum amount of charge moved in a time
and stimulation-dependent manner. This result is consistent with the idea that the
availability site functions over the normal range of dynamic Ca\(^{2+}\) changes in the
triad junction, and modulates the amount of charge available to do E-C coupling.

Materials and Methods

The experimental preparation, protocols, and recording apparatus were essentially
the same as described previously (Hemy and Jong 1990, Jong et al. 1997 Stroffekova
and Hemy 1997). Briefly, single cut skeletal muscle fibers from the semitendinosus
muscle of Rana catesbriana were voltage-clamped using a vaseline-gap method. The
fiber ends were permeabilized briefly (1-2 mm) with saponin (0.01% in a Cs-
Glutamate internal solution) and thereafter were perfused with a Cs-Glutamate
internal solution. The holding potential was −90 mV. Pulses were applied to the
fiber and data was acquired using a microcomputer-based pulse generation and data
acquisition system. The command pulse to the voltage clamp was low-pass filtered
at a corner frequency of 3 kHz with an 8-pole Bessel filter. Membrane currents were
filtered at 1.2 kHz using an 8-pole Bessel filter before being digitized.

Charge movement currents were elicited in response to test pulses to 0 mV for
200 ms. The maximum charge movement, \(Q_{\text{max}}\), was obtained by integrating the
charge moved at 0 mV. Linear leak and capacity currents were subtracted off-line
using a small scaled control pulse that was applied after each test pulse from a
subtracted holding potential of -110 mV. For repetitive stimulation, ten identical test pulses were applied once every 6 seconds (0.17 Hz). The maximum charge measured at each test pulse, Q_n, was normalized to the charge measured at the final pulse, Q_{10}. The measurements were expressed as mean ± S.D. Significance was judged at the $P < 0.05$ level.

Table 1. Experimental solutions

<table>
<thead>
<tr>
<th>Internal/end pools (mmol/l)</th>
<th>Solution</th>
<th>CsGlu</th>
<th>EGTA</th>
<th>BAPTA</th>
<th>MOPS</th>
<th>Na$_2$CP</th>
<th>Na$_2$ATP</th>
<th>MgSO$_4$</th>
<th>CaSO$_4$</th>
<th>glucose</th>
<th>pCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>76</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>580</td>
<td>0.023</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>66</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>638</td>
<td>0.019</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External/central pool (mmol/l)</th>
<th>Solution</th>
<th>TEA$_2$SO$_4$</th>
<th>CsSO$_4$</th>
<th>MOPS</th>
<th>CaSO$_4$</th>
<th>MgSO$_4$</th>
<th>CdSO$_4$</th>
<th>LnCl$_3$</th>
<th>TTX (μmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>85</td>
<td>5</td>
<td>5</td>
<td>3.25</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>1.56</td>
</tr>
</tbody>
</table>

EGTA and MOPS were added as the free acid. BAPTA was added as the tetracesium salt. The pH was adjusted using CsOH or TEA-OH.

The composition of the recording solutions is given in Table 1. The solutions were designed to eliminate all ionic currents. The osmolarity of internal and external solutions was adjusted to 235 and 255 mOsm (± 5 mOsm), respectively. The pH was 7.1 at 8°C. The free Ca$^{2+}$ concentration of the external solution was estimated as 1 mmol/l. The free Mg$^{2+}$ concentration of the internal solution was kept constant at 1 mmol/l. The internal solutions contained 10 mmol/l EGTA or 10 mmol/l BAPTA yielding an estimated pCa$_i$ of 9. pCa$_i$ was raised by adding CaSO$_4$ to solutions A or B. Paired fibers dissected from the same muscle were used for comparisons of charge movement measured in the EGTA and BAPTA containing internal solutions (Solutions A and B, Table 1). All experiments were performed at a temperature of 8 ± 1°C.

Results

Effect of raising triadic Ca$^{2+}$ concentration on the maximum charge movement

We first tested whether dynamic increases in intracellular Ca$^{2+}$ during activity can increase charge movement, and measured the onset of the effect. During Ca$^{2+}$ release, the Ca$^{2+}$ concentration in the triadic space near the release sites is expected to rise rapidly and to greatly exceed resting myoplasmic levels, reaching the tens of micromolar range within a few milliseconds.
Figure 1. Effect of repetitive depolarization on the maximum charge measured at 0 mV in paired fibers perfused intracellularly with either the 10 mmol/l EGTA (filled circles) or 10 mmol/l BAPTA (open circles) internal solution (Table 1, Solutions A and B). A 200 ms pulse to 0 mV was applied every 6 seconds (0.16 Hz) for 10 cycles. The maximum charge measured during each pulse, Q_n, was normalized to the charge measured at pulse number ten, Q_{10}. Data points represent the mean of measurements from three pairs of fibers. Error bars were within the width of the symbols. A) $pCa = 9$, B) After changing the internal solution to one containing the same buffer but with pCa raised to 7.3.
Fig 1A examines the effect of repetitive suprathreshold stimulation on the maximum charge measured from paired fibers perfused with an internal solution containing either 10 mmol/l EGTA or 10 mmol/l BAPTA as the Ca\(^{2+}\) buffer, without added Ca\(^{2+}\) (pCa ≤ 9). In the EGTA perfused fiber, the maximum charge increased with increasing pulse number, reaching a steady value after 2-3 pulses. This was within 6-12 seconds after the first depolarization. The charge moved at the last pulse, \(Q_{10}\) was 20% greater than the initial charge, \(Q_1\). After a rest of 5-10 minutes, the charge \(Q_1\) returned to the initial value. In contrast, no increase in charge occurred in the paired BAPTA perfused fibers (filled symbols). Thus BAPTA was able to prevent the stimulation-dependent increase in charge movement.

Fig 1B shows the results of similar measurements starting from a pCa of 7.3 (50 nmol/l). The initial charge is similar to the charge measured at a resting pCa of 9 (Stöffekova and Heiny 1997). Again, the charge increased during the first 2-3 pulses and \(Q_{10}\) measured after ten depolarizations was about 20% greater than the charge measured at the first pulse. After a rest of 5-10 minutes, the charge \(Q_1\) returned to the initial value. The increase in charge did not occur in the BAPTA perfused fibers at either pCa value. The mean data from these measurements is summarized in Table 2. The charge measured at the first and last pulse was significantly different in the EGTA (\(P = 0.01\) and \(P = 0.05\) for pCa 9 and 7.3 respectively) but not in the BAPTA perfused fibers (\(P > 0.8\) for pCa 9 and 7.3).

Table 2. Effect of repetitive suprathreshold stimulation on the maximum amount of charge available to move upon depolarization. Mean data (\(n = 3\)) from same fiber pairs described in Fig 1. \(Q_1\) is the mean charge measured at pulse #1 and \(Q_{10}\) is the mean charge measured at pulse #10.

<table>
<thead>
<tr>
<th>Condition</th>
<th>(Q_1) (nC/(\mu)F)</th>
<th>(Q_{10}) (nC/(\mu)F)</th>
<th>(Q_{10} - Q_1) (nC/(\mu)F)</th>
<th>(Q_{10}/Q_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA, pCa 9</td>
<td>15.51 ± 0.22</td>
<td>18.69 ± 0.63</td>
<td>3.18 ± 0.50</td>
<td>1.16 ± 0.03</td>
</tr>
<tr>
<td>EGTA, pCa 7.3</td>
<td>15.85 ± 0.21</td>
<td>19.83 ± 1.65</td>
<td>3.98 ± 0.42</td>
<td>1.27 ± 0.04</td>
</tr>
<tr>
<td>BAPTA, pCa 9</td>
<td>13.97 ± 0.79</td>
<td>13.75 ± 0.69</td>
<td>-0.22 ± 0.10</td>
<td>0.98 ± 0.01</td>
</tr>
<tr>
<td>BAPTA, pCa 7.3</td>
<td>12.43 ± 1.47</td>
<td>12.71 ± 1.02</td>
<td>0.28 ± 0.41</td>
<td>1.02 ± 0.03</td>
</tr>
</tbody>
</table>

This result is consistent with our previous finding that the maximum amount of charge that moves upon depolarization is not static but can be increased by increasing intracellular free Ca\(^{2+}\) (Stöffekova and Heiny 1997). Additionally, it demonstrates that charge movement can be increased rapidly by the dynamic local
Ca$^{2+}$ increases that occur during activity. These are expected to transiently raise triadic Ca$^{2+}$ levels from a resting pCa ~ 7 to above pCa 6. BAPTA was able to prevent the stimulation-dependent increase because it more effectively buffers Ca$^{2+}$ at distances in the triadic space. Under these conditions, although EGTA effectively buffers resting Ca$^{2+}$ uniformly throughout the myoplasm, it is not expected to buffer released Ca$^{2+}$ effectively at distances less than about 100 nm from the release sites. With EGTA, contraction is prevented while the normal dynamic triadic Ca$^{2+}$ changes continue essentially unperturbed.

Table 3. Effect of holding potential (HP) and calcium current blockers on the stimulation-dependent increase in Q_{max}. Mean data (n = 5)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Q_1 (Q_{10}) (nC/μF)</th>
<th>Q_{10} ($Q_{10} - Q_1$) (nC/μF)</th>
<th>Q_{10}/Q_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA HP-100</td>
<td>21.65 ± 0.53</td>
<td>28.07 ± 1.36</td>
<td>1.17 ± 0.02</td>
</tr>
<tr>
<td>EGTA HP-70</td>
<td>12.97 ± 1.15</td>
<td>15.80 ± 1.76</td>
<td>1.22 ± 0.02</td>
</tr>
<tr>
<td>EGTA 0 La$^{3+}$ 0 Cd$^{2+}$</td>
<td>33.37 ± 1.98</td>
<td>39.42 ± 2.2</td>
<td>1.18 ± 0.01</td>
</tr>
</tbody>
</table>

Table 3 examines whether changing the holding potential or blocking entry of extracellular Ca$^{2+}$ can alter the activity-related increase in charge movement. When the holding potential was changed from −100 to −70 mV, the initial charge measured at 0 mV was less but the stimulation-dependent increase remained. The charge measured at the first and last pulse was significantly different for both holding potentials ($P = 0.002$ and $P = 0.04$ for HP −100 and HP −70 mV, respectively). This suggests that the increase in charge movement is not due to recruitment of other gating currents. When La$^{3+}$ and Cd$^{2+}$ which are normally present in our external solution were omitted, the stimulation-dependent increase remained. The charge measured at the first and last pulses were significantly different ($P = 0.01$). This suggests that Ca$^{2+}$ entry does not contribute significantly to the triadic Ca$^{2+}$ pool that modulates charge movement during depolarization.

Mechanism of the effect

The next experiments examined possible mechanisms by which triadic Ca$^{2+}$ could modulate charge movement. This modulation could occur either directly via Ca$^{2+}$ binding to the voltage-sensor, or indirectly via activation of a closely associated Ca$^{2+}$-dependent enzyme for which the dihydropyridine receptor is a substrate. For example, a Ca$^{2+}$-dependent kinase located near or physically associated with the...
dihydropyridine receptor could rapidly phosphorylate it during activity to upregulate the voltage-sensor. The observed kinetics of the modulation are consistent with both types of mechanism. The onset was fast, with a maximal increase occurring within 6–12 seconds of the first suprathreshold depolarization. The effect was maintained and charge was reset to the initial value over the next 5–10 minutes.

Table 4. Effects of phosphorylation modifying agents on the stimulation-dependent increase in maximum charge movement. Protein kinase inhibitor (PKI) okadaic acid (OkA), calmodulin inhibitor peptide (CAM$_{inh}$), ATP$_{γS}$, and ATP. Each fiber was first perfused with the standard EGTA internal solution and allowed to equilibrate for 45 minutes. Charge movement was then recorded in response to a series of repetitive pulses to 0 mV applied at 0.16 Hz. Q_1 (control) is the charge recorded from pulse #1 of this train and $Q_{10} - Q_1$ (control) is the difference in charge between pulses #10 and #1. At that time the internal solution was exchanged for a test solution having the same composition but with the phosphorylation modifying agent added. In the case of nominally 0 ATP the ATP solution was used from the beginning because of the difficulty of washing out ATP. After another 20 minutes equilibration the pulse train was repeated. Q_1 (test) is the charge recorded from pulse #1 of this series and $Q_{10} - Q_1$ (test) is the difference in charge between pulses #10 and #1.

<table>
<thead>
<tr>
<th>TEST AGENT</th>
<th>Q_1 (control) (nC/µF)</th>
<th>Q_1 (test) (nC/µF)</th>
<th>$Q_{10} - Q_1$ (control) (nC/µF)</th>
<th>$Q_{10} - Q_1$ (test) (nC/µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI ($n = 1$)</td>
<td>35 ± 6.2</td>
<td>36 ± 1.19</td>
<td>9.46 ± 1.50</td>
<td>9.40 ± 0.92</td>
</tr>
<tr>
<td>OkA ($n = 2$)</td>
<td>30 ± 2.92</td>
<td>30 ± 3.60</td>
<td>4.64 ± 0.81</td>
<td>4.86 ± 0.64</td>
</tr>
<tr>
<td>CAM$_{inh}$ ($n = 4$)</td>
<td>36 ± 2.04</td>
<td>35 ± 2.20</td>
<td>5.25 ± 1.04</td>
<td>4.19 ± 0.61</td>
</tr>
<tr>
<td>ATP$_{γS}$ ($n = 4$)</td>
<td>33 ± 1.07</td>
<td>31 ± 1.45</td>
<td>5.91 ± 0.87</td>
<td>7.89 ± 1.89</td>
</tr>
<tr>
<td>0 ATP ($n = 5$)</td>
<td>30 ± 0.67</td>
<td>30 ± 0.07</td>
<td>6.99 ± 0.33</td>
<td>6.99 ± 0.33</td>
</tr>
</tbody>
</table>

To examine whether an indirect mechanism might be involved, we examined the effects of agents known to promote or block phosphorylation of ion channels. These results are summarized in Table 4. As shown, the maximum charge measured from rested fibers at the start of pulsing (Q_1) was similar in control and test conditions. Q_1 was not significantly different in control and test conditions for any agent tested ($P = 0.4, 0.9, 0.5, 0.1$ for PKI, OkA, CAM$_{inh}$ and ATP$_{γS}$, respectively). Repetitive stimulation increased the maximum charge movement under control conditions, by an amount similar to that shown in Table 2. None of these agents was able to eliminate or prevent the stimulation-dependent increase which was the same in control and test conditions ($P = 0.1, 0.8, 0.5$, and 0.2 for PKI, OkA, CAM$_{inh}$ and ATP$_{γS}$, respectively). 20 µmol/l PKI, a specific blocker of cAMP-dependent phosphorylation, or 10–20 µmol/l calmodulin inhibitor, a specific blocker of Ca$^{2+}$-
calmodulin dependent phosphorylation did not alter testing Q_{max} or prevent the stimulation-dependent increase in charge. Likewise these were not changed by 10 μmol/l okadaic acid in combination with 4 mmol/l ATP$_2$-s and 1 mmol/l ATP suggesting that phosphorylation via PKA or PKC pathways was not involved. The stimulation-dependent increase remained when ATP was removed from the internal solution. Although these results cannot exclude all possible pathways of indirect modulation they make it unlikely that a phosphorylation mechanism is involved.

Effect of SR depletion

We next examined the effect of removing SR Ca$^{2+}$. This was accomplished by applying the same protocol of repetitive depolarizations to fibers before and after the SR had been depleted of Ca$^{2+}$. Depletion of the SR was accomplished by applying suprathreshold pulses once per second for one hour to fibers perfused with high concentrations of an EGTA-containing internal solution (Table 1 Solution A), while monitoring Ca$^{2+}$ release optically (Jong et al. 1995 1997). The results are shown in Fig. 2. Under control conditions, the charge moved after ten suprathreshold depolarizations was greater than the charge elicited by the first depolarization from

![Control Figure](image)

![SR-depleted Figure](image)

Figure 2. Effect of SR depletion on the stimulation-dependent increase in charge movement. Charge movement currents (left) and intrinsic optical signals (right) recorded in response to repetitive stimulation at 0.16 Hz in control conditions and after SR depletion. Charge movement currents and intrinsic optical signals elicited by pulse #1 (thicker trace) and pulse #10 (thinner trace) are shown superimposed. The average Q_{10}/Q_1 ratio in two fibers subjected to this protocol was 1.14 ± 0.001 in control conditions, and 1.02 ± 0.02 after depletion.
Discussion

We previously demonstrated that the amount of charge which can move upon depolarization is not static but can be increased by raising resting intracellular free Ca2+. We proposed the existence of a Ca2+ binding site on or near the voltage-sensors which can modulate the distribution of voltage sensors between available and unavailable states. The present study demonstrates that charge can be increased by dynamic Ca2+ increases in the triadic gap elicited by repetitive depolarizations to voltages above threshold for releasing Ca2+ from the SR. Thus this modulation occurs in the physiological range of Ca2+ changes that occur in the triad during normal muscle activity. The effect is rapid and maintained. Charge is increased within 6-12 seconds and takes 5-10 minutes to reset to the initial value after which it can be increased again by subsequent depolarizations. The stimulation dependent increase in charge could be prevented by intracellular BAPTA and by depleting the SR of Ca2+ but not by agents known to alter ion channel phosphorylation. This suggests that the modulation most likely occurs by a direct binding of Ca2+ to a site on or closely associated with the voltage sensor. This effect is seen in EGTA but not in BAPTA perfused fibers because triadic Ca2+ changes continue in the former but not the latter. The different results with BAPTA and EGTA support the idea that the postulated site is normally populated by a local Ca2+ pool—that is by Ca2+ released from the SR into the triadic space.

Taken together, these data can be explained by the model shown in Fig. 3. In a fully rested fiber, the putative availability site(s) is not expected to be fully populated. A suprathreshold depolarization will move this charge to the active state, causing Ca2+ release and a transient rise in the triadic Ca2+ concentration. As this Ca2+ binds to the availability site on the voltage sensors, more sensors move to the normal resting or available state and are able to move upon subsequent depolarization. The maximum amount of charge moves when all sites are saturated—i.e., all voltage sensors are in the available state. Normally one or two pulses above threshold for Ca2+ release are all that is needed to populate the site. Presumably binding of Ca2+ to this site has fast ON rate and a slow OFF rate. According to this model, a resting fiber which has not been stimulated to twitch for some time would have less than the maximum charge available to do E-C coupling. After a
Figure 3. Proposed model of modulation of the voltage-sensor by triadic Ca$^{2+}$. Q_r and Q_a represent the normal resting and active states of the voltage-sensor respectively. Only charge which is initially in the resting state can move upon depolarization and do E-C coupling—i.e., charge which has Ca$^{2+}$ bound to the proposed internal availability site. Q_u represents an unavailable state. Binding of Ca$^{2+}$ to the unavailable state promotes the transition of charge to the resting state. This Ca$^{2+}$ comes from the increase in triadic Ca concentration, [Ca]t during Ca$^{2+}$ release. Thus, SR Ca$^{2+}$ release feeds back positively on the voltage sensor to recruit more charge into the available state from which it can move upon subsequent depolarization.

Few depolarization however, the remaining charge would fully prime and become available to do E-C coupling. It is possible that this modulation represents a cellular mechanism for conserving energy by making voltage-sensors fully functional only when needed during periods of muscle activity.

More generally this model, although different in the details, supports data from other studies which suggest that the state of the dihydropyridine receptor and/or the number of activable voltage-sensors can be influenced by Ca$^{2+}$ ions released into the triad junction during SR Ca$^{2+}$ release (Pizarro et al. 1991, Csernoch et al. 1992, Rios et al. 1993, Jong et al. 1995, 1996, Pape et al. 1996). Such cross-talk between the Ca$^{2+}$ release and voltage-sensing processes has been used to support the idea of a close physical association and/or an allosteric interaction between the SR Ca$^{2+}$ release channels/ryanodine receptors and the voltage-sensors/dihydropyridine receptors during excitation-contraction coupling.

Acknowledgements. This work was supported by the National Institute of Arthritis and Musculo-Skeletal and Skin Diseases of the National Institutes of Health, USA (RO1-AR40243) and by the American Heart Association (Established Investigator Award to J A H).

References

release from the sarcoplasmic reticulum on intramembrane charge movement in skeletal muscle. Adv Exp Med Biol 311, 137—148

Heiné J A, Jong D (1990) A nonlinear electrostatic potential change from the T-system of skeletal muscle detected under passive recording conditions using potentiometric dyes. J Gen Physiol 95, 147—175

Final version accepted March 29, 1997