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Analysis of Burst ing in Stein's Model 
with Realistic Synapses 
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Abstrac t . By introducing realistic synaptic potentials to the Stein's stochastic 

model of neuron we obtain a new model able to produce bursting activity. The 

mechanism of burst initiation is described and basic characteristics, such as period 

of bursting, period of quiescence and frequency of spikes are calculated from model 

parameters. 
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Bursts are series of action potentials on neuronal membrane alternating with rel­

atively long quiescent periods. Bursting activity is a very characteristic neuronal 

behavior and it can often be found in the recorded action potential trains of some 

neurons. In li terature we can find two main groups of mathematical models of 

bursting neuions: a) conductance models based on Hodgkin and Huxley equations 

with certain dependency between ionic currents (Av-Ron et al. 1993), or, b) models 

of simple neural networks with a certain kind of connectivity. Outputs of stochastic 

models, like the Stein's model, usually are of Markovian character and they there­

fore cannot generate spike pat terns such as bursts. This article describes a new 

stochastic model based on Stein's neuronal model, with synapses corresponding to 

the conductance models. This model is able, under certain conditions, to produce 

bursting activity. 

Stein's neuronal model (Tuckwell 1979; Lanský 1983), is very often used by 

neurobiologists for its efficiency and relative simplicity. Stochastic inputs to the 

neuronal cell are modelled by step functions tha t increase or decrease the membrane 

potential at random t ime points, the differences of which have an exponential 

distribution. Contributions of many synaptic inputs (point processes) converge to 

Poisson process (consequence of Palm-Khintchine theorem). Therefore, synaptic 

activation is described by two independent Poisson processes (one for excitation, 

one for inhibition), t ha t increase or decrease the trajectory of the stochastic process 

by a and i, respectively. During intervals between the excitatory or the inhibitory 
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synaptic activation the membrane potential drops to zero with the relaxation time 
constant ra. When for the first time potential X(t) exceeds the threshold level S. 
we suppose that the neuron produces spike. Then X(t) is reset and starts again 
from the value X{0). Therefore, we describe neural firing as the first passage time 
of the stochastic process X(t). The interspike interval (ISI) is a random variable 
T given by relationship: 

T = M{t>0,X(t)>S} (1) 

where the stochastic process X(t) is determined by equation: 

dX{t) = - — X(t)dt + ac\N+(t) + idN~{t) (2) 

where the initial value X(0) < 5, and T„ > 0 is the membrane time constant, 
a > 0, i < 0 are the magnitudes of the synaptic activation steps, N+(t), N~(t) 
are two independent homogeneous Poisson processes with initial values iV+(0) = 
7V-(0) = 0 and with intensities A and ui. 

A simple and physiologically reasonable model of time dependent potential of 
a single synapse is the alpha function (Bernard et al. 1994): 

h{t) = ^ e x p (-t) (3) 

where T is the synaptic time constant. In case of synaptic activation at different 
time points the total synaptic potential corresponding to one mediator is 

hs(i) = 5 ^ / J (r -ŕ,)rieaviside(ŕ,) (4) 
t 

where t, are time points of synaptic activation. In case of more synaptic mediators 
we sum potentials hs(t) with different weights a and synaptic time constants r, as 
will be shown later. 

In the original Stein's model the synaptic activations d.Y+(ŕ)/dŕ and 
dA r _(r)/df are summations of delta functions (Dirac distributions). Let us re­
place each delta function by alpha function (3) and use different time constants for 
excitatory and inhibitory activation. Then, activations dA?"+(ŕ)/clŕ and dA^-(r)/dr 
are replaced by functions h+(t) and hj(t) in the form of Equation (4) (Fig. 1). 
Functions h^'(t) and h~(t) are not reset after spike. The model is first passage 
time of the stochastic process X(t) described by equation: 

dX(t) = ~ — X(t)dt + a ht(t)dt + i h~ (t)dt (5) 
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Figure 1. Poisson activation (delta functions) and the corresponding realistic synaptic 
potential h^(t). Parameters: Poisson intensity A = 1, synaptic time constant r = 1. 

with initial condition X(0) = 0, where a and / are weights of synaptic excitation 

and inhibition, r„ is the relaxation constant of axon membrane, and functions hf(t) 

and h~{t) are given by (4) with activation t ime instants rj1" and t~ determined by 

Poisson processes N+(t) and N~(t), and with t ime constants T+ and T ~ , resp. 

Equation (5) describes a model of neuron with many synapses corresponding to 

one excitatory and one inhibitory mediator. This model will be generalised later. 

Under certain conditions, we can observe bursting activity of the modified 

Stein's neuronal model. The bursting mechanism can be explained in the following 

way (Fig. 2): a realistic synapse is a t ime invariant dynamic system tha t works as 

low-pass filter. High frequencies at the output are suppressed to such an extent that 

the period of changes of the synaptic potential is longer than the mean interspike 

interval. Then, if the potential on synapses is higher than a certain activation 

level, the neuron can fire several times, which can be considered a burst . If the 

synaptic potential is less than the activation level, the neuron does not fire: this 

is the quiescent period between bursts. Intuitive conditions of bursting are: (i) 

the mean value of the total synaptic potential should be close to the activation 

threshold, (ii) at least one synaptic mediator has to have t ime constant greater 

than the relaxation t ime constant of the axonal membrane, and (iii) variance of 
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Figure 2. Schematic representation of burst initiation caused by realistic synapses. 
Parameters: Stein's model without inhibition, Poisson intensity A = 1.38, membrane 
relaxation time constant r„ = 5.8 ms, synaptic time constant r = 30 ms, threshold 
S = 10 mV. Spikes on the axonal membrane were added artificially to show the time 
points when the membrane potential reaches the threshold. 

quick synapses should be less t h a n variance of slow synapses. Fig. 2 shows the 
mechanism of bursting activity of t h e Stein's model with realistic synapses. 

A signal with bursts is described by three parameters: mean period of bursting. 
TB, mean period of quiescence between bursts, TQ, and mean frequency of spikes 
in bursting period, /;,. Other characteristics often used in neurobiology, such as 
long tail of ISI histogram or line-like pa t te rn on scatter plot of /-th and (/ + l )- th 
spike time differences, are not very convenient for analytical purposes. 

First, we find the analytical solution for the simplified model with a large 
number of synapses, corresponding to one excitatory mediator, and then we will 
generalize it for more synaptic mediators. The scheme of the simplified model, with 
the parameters used in t h e analysis, is in the Fig. 3. 

This model is described by differential equation: 

dX{t) = -—X(t)dt + h,{t)dt (6) 

with initial condition X(0) = 0, and hs (ŕ) is given by (4) with activation t ime points 
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Figure 3. Schematic lepiesentation of Stein's model with íeahstic excitatory synapses, 
signals and paiameters used in the analysis Signal Z(t) is an approximation of diV+/d/, 
signal i (t) is an appioximation of h^(t) 

t, deteimined by the Poisson process N+(t). Following for example the procedure 
of Lanský (1983) we approximate the Poisson process N+(t) by the Wiener piocess 
with drift V(t) = Adŕ + VAdlí"(ŕ), wheie W(t) is s tandard Wiener process. The 
signal dA r +(ŕ)/dŕ can be approximated as Z(t) = dV(t)/dt = A + ^/XdW(t)/dt. 
which is white noise with a normal distribution, mean A, and standard devia­
tion vA- Signal Z{t) passes through the t ime invariant linear system of a íealis-
tic synapse with the impulse transfer function h(t), which has Laplace transform 
H(s) = 1/(1 + TS)2 The signal Y(t) at the synaptic output has the autocovari-
ance function i?(r) = (A/4) ( | r | / r 2 + 1/r) e x p ( — | r | / r ) , mean \x = A and standard 
deviation a = (l/2)-y/A/r. From Rice's formula (Leadbetter et al 1983) we get the 
mean number of upcrossings of the level x per unit t ime interval of the process 
Y(t): 

m ( ^-Xf\ 
NTJ 

2-KCT 
exp 2 a 2 

where A2 < 00 is the second spectral moment, which can be obtained as A2 = 
—iž"(0) = A/(4r 3 ) . After some algebra using Rice's formula (7) for process Y(t) 
we get t h e period of bursting, Tg, as the average length of t h e interval between 
upcrossing and downcrossing of the level x, and the period of quiescence, TQ, as 
the average length of the interval between downcrossing and upcrossing: 

TB 

$ ( - M ) 
27TCT$ -

{x-fJ.) 
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TQ 
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(8) 
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where <ä>(u) is the normal distribution function, and x = S/ra is the activation 
threshold for Stein's model. Mean bursting frequency /;, is obtained from Equation 
(6) for hs(t) = const = w as 

i (WT° ~ S^\ T" ( l n (T'lW ~ S^ ~ l n (T<<^ ~ m ( " ' ) ) 
WTU 

where it' is the mean level of the synaptic potential Y(t) above the activation 
threshold x = S/T„: 

exp I — 

w = fx + <T V^r—TŇ- ( 1 0 ) 

The model with several excitatory and inhibitory mediators is obtained from model 
(6) in Fig. 3 by replacing signal Y(t) by weighted sum of signals Y^(t) corresponding 
to the different mediators. The model is described by differential equation: 

dX(t) = -1-X(t)dt + Yiakhl
s
k)(t)dt (11) 

where k = 1,2,... denotes the synaptic mediator, functions hs (ŕ) are given by 
(4) with time constants r' f c ', and weights a/,, and activation time instants /; de­
termined by independent Poisson processes A*1*'(ŕ). Summation of non-correlated 
normal processes Y(/i,cr) with weights aj. is also a normal process with a mean 
M = Z)(«*-Aťfc) = E(afcA<t)> variance P = J2ialaÍ) = V 4 J2(alxkn) and a second 
spectral moment A2 = l/^J2(aÍ^í lTk ) Spike frecmency in burst periods, the pe­
riod of bursting and the period of quiescence are obtained by substitutions to (8). 
(9) and (10). 

The following Table compares simulation results of about 1200 spikes in each 
file, with calculated parameters. Values show good correspondence. The differences 
can be explained by approximation of signal dY+(ŕ)/dŕ by white noise, and by the 
fact that to evaluate a signal obtained by simulation, the minimum length of the 
quiescent period had to be set to distinguish and to separate bursting periods. In 
signals where bursts are not very clear this value cannot be determined exactly. 
Programs for simulations were written in Matlab and run on a PC 486 and a HP 
9000 (Hrubý 1994). Due to an enhanced computation speed we used the differential 
equations method for the problem of summation of synaptic potentials (Bernard 
et al. 1994). 

In all models described in this article the action potential does not reset synap­
tic potentials, as it is in the original Stein's model, i.e. after each spike some level of 
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Table 1. Computer simulation 

Model parameters 

Solution \ T r„ 

Simulation 2 10 0.5 
Calculation 2 10 0.5 

Simulation 1.7 30 5.8 
Calculation 1.7 30 5.8 

S 

1.1 
1.1 

10 
10 

results an 

ľ 

2.041 
2.000 

1.7002 
1.7000 

d calculated parameters. 

Calculation and simulation results 

a 

2.269 
2.236 

0.115 
0.119 

i/Nu TB 

95.77 18.60 
93.73 17.39 

192.65 79.87 
192.41 80.744 

TQ W 

92.76 2.3266 
76.34 2.3222 

109.53 1.817 
111.66 1.810 

h 

0.680 
0.680 

0.0557 
0.0567 

potential can remain on synapses. The fact makes our model similar to the double 
compartment model of Rospars and Lanský (1993). In our opinion, this arrange­
ment bet ter describes the real situation on the cell membrane and this feature is 
also essential for generating bursts. A more exact model is obtained by introduc­
ing reversal potentials to the Stein's model with realistic synapses, because slow 
synaptic currents, e.g. associated with GABA B, or NMDA receptors, are voltage 
dependent and they are open only at a relatively high level of stimulation. These 
modifications will be referred to a separate article. 
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