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Full Analytical Description of Graviosmotic Volume Flows 
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A b s t r a c t . A full analytical description of graviosmotic volume flows is presented. 

This was done with the use of theoretical models earlier developed on the basis 

of interferometric studies of graviosmotic systems. The description includes both 

stat ionary and non-stationary graviosmotic flows induced with solutions whose 

density decreases as well as increases with increasing concentration. The obtained 

equations tha t describe the fluxes may prove especially useful in studies on water 

t ransport in plants which occurs by graviosmotic mechanisms. 
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I n t r o d u c t i o n 

The graviosmotic phenomenon was first noticed in 1971 (Kargol 1971; Przestal-

ski and Kargol 1972). Its essence consists in osmotic polarization of 2-membrane 

systems that are properly positioned with respect to the vertical. As a result of 

the polarization induced by the force of gravity, definite volume flows are gener­

ated which are called graviosmotic flows. This phenomenon has been the subject 

of numerous studies performed by the volume-flow measurement method (Kargol 

1971, 1978, 1980, 1985, 1992; Kargol et al. 1979; Przestalski and Kargol 1972, 1976, 

1987; Sl§zak 1983) and also the interferometric method (Dworecki 1984; Kargol et 

al. 1986; Kargol and Dworecki 1993). The main purpose was to give the gravios­

motic phenomenon a physical interpretation and to t ry to develop a mathematical 

description of the generated volume flows. Already the first a t t empt to do so was 

based on the postulate raised by Kargol and Przestalski (Kargol 1971; Przestal­

ski and Kargol 1972), which says tha t fundamental for graviosmosis is effect of 

gravity on the s ta te of the near-membrane diffusive layers which are generated in 

graviosmotic systems. By the s ta te of the layers are meant their thickness and con­

centration gradients in them. In later studies tha t concept was developed (Kargol 

1978, 1980, 1992; Kargol et al. 1976, 1979; Przestalski and Kargol 1987; Šlejzak 

1983). 
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Recently, we presented (Kargol and Dworecki 1993) some systematic inter­

ferometric studies on diffusive near-membrane layers generated in graviosmotic 

systems. These studies provided direct information on the layers such as their 

thickness and solution concentration gradients within them. Based on this, two 

theoretical models of graviosmotic systems have been developed. One of them is 

concerned with systems rilled with solutions whose densities increase with increas­

ing concentration, the other with systems whose densities decrease with increasing 

concentration. 

In the present work the models have been supported by the results of ex­

periments performed by the method of volume flow and solute flow measurement. 

Then, with the use of the models, suitable equations were derived tha t describe 

both stationaiy and non-stationary graviosmotic flows. They were derived on the 

basis of the so-called practical Kedem-Katchalsky equations (1958) which have the 

form: 

J„ = Lp • a • A n + L„ • AP (1) 

j s = -uj-AU + (l~a)-C- J„ (2) 

where Jv is the volume flux, j s is the flux of solute, Lp is the filtration coefficient, 

a is the reflection coefficient, u> is the permeability coefficient, A l l is difference in 

osmotic pressures and AP is difference in mechanical pressures. 

The quanti ty C is given by the expression: 

-^ _ C i - C 2 

l n ( C i / C 2 ) 

where C\ and Co are concentrations. 

It can be shown tha t for the small concentration's difference (C\ — C2) the last 

formula reduced to: 

C = 0.5 • (Ci + C2) (3) 

The last formula is obtained by disintegrating function hi x into a series: 

nrx-l\ 2 (x- 1 \ 2 

and next by reducing calculations to the first member of this series (Katchalsky 

and Curran 1965, Podolak 1978). 

The equations obtained in the present work describe fully graviosmotic flows. 

We assume tha t they can be especially useful in biophysical studies on water trans­

port in plants which occurs with the graviosmotic mechanisms. Mainly, the xylem 

water transport is meant tha t occurs in agreement with the graviosmotic hypothesis 

(Kargol 1978, 1992). 
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The graviosmotic phenomenon. Theoretical models of graviosmotic sys­
tems 

The essence of the graviosmotic phenomenon, which is obseived in 2-membrane 

systems, consists in osmotic polarization of the systems due to the force of gravity 

As a result of this polarization, definite volume flows called graviosmotic flows are 

generated In order to present tha t phenomenon in most plam terms, let us considei 

the simplest graviosmotic system i e a system composed of two membranes Mi 

and M 2 with equal coefficients of filtration (Lp\ = LV2 = Lp) reflection [a\ =0-2 = 

a) and permeability (u>i = ui> = w) 

The membranes part i t ion the system into th iee compai tments A B and C 

Let the side compartments (A and C) be filled with pftte water (01 solution of low 

concentiation Co = C A = Cc) and the middle compai tment (B) with solution of 

concentration C B > Co It is obvious that this system in position (a) with respect 

to the veitical, as shown in Fig l a is osmotically symmetrical Differences in 

the effective osmotic pressures aAIli and crAU.2 on each membrane aie equal and 

compensate one another (crAIIi = CTAII2) No volume flow occurs in the system 

(J, = 0) which is confirmed expenmentally 
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Figure 1. Two-membiane system m position (a) and (b) (Kaigol 1992) \l\ M2 

membranes A, B, C - compartments C A , CB, CC concentrations 

After reorientation of the system with respect to the vertical position (b), 

in which the membranes are si tuated horizontally (Fig l b ) , it becomes polar 

ízed osmotically due to the force of gravity A certain resulting osmotic force, 

ALT = crAn2 — c rAn l 5 develops in the system and induces a volume flow J , , called 

graviosmotic flow This flow is directed upwards if the system contains solutions 

whose densities increase with concentration In case the solutions density decreases 

with concentration, the graviosmotic flow is directed downwards If the membranes 
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Mi and M2 of a graviosmotic system differ in their reflection coefficients (<7i / 02), 

there will be a volume flow even if the system is in position (a). The flow Jva oc­

curs in position (a) because differences in the effective osmotic pressures <7iAni 

and <72An2 will not fully compensate (in spite of A n i = A ^ ) . Upon reorienting 

the system to position (b) the volume flow will change assuming value Jv\,. In that 

case the graviosmotic flow will be equal to the difference between Jva and Jvb- Ex­

perimental investigations (Kargol 1978, 1980; Przestalski and Kargol 1987; Sl§zak 

1983) have shown tha t graviosmotic flows may occur not only if C A = Cc but also 

if C A / Cc- It has been also found (Kargol 1978) that they can be generated if 

C A < C B and Cc < C B as well as if C A > C B and Cc > CB- In general, it can 

be said tha t graviosmotic flows can occur if C A 7̂  C B 7̂  Cc • 

Figure 2. a: Theoretical model of graviosmotic system filled with solution of density 
increasing with increasing concentration, b. Exemplary interferogram performed with 
the use of aqueous solutions of glucose in the graviosmotic system (Kargol and Dworecki 
1993). 

In order to give a physical explanation of the graviosmotic phenomenon, let 

us consider two theoretical models of graviosmotic systems which are shown in 

Figs. 2a and 3a. They have been based mainly on the results of interferometric 

studies (Kargol and Dworecki 1993). The first of the models is for systems filled 
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with solutions whose density increases with concentration, the second is for systems 
filled with solutions whose density decreases with concentration. 

Let us now take a closer look at the model of the system in Fig. 2a, i.e. a system 
filled with a solution whose density increases with concentration. Let us assume 
t h a t the concentrations satisfy the conditions: Cg > Cug and Cg > Cdg , where Cg 

is the concentration in the middle compartment (B), Cug is the concentration in 
the upper compartment (A) and C,ig is the concentration in the lover compartment 
( C ) . In the situation shown, in the vicinity of the upper membrane ( M i ) there 
will develop stable diffusive layers ľ and ľ B, whereas in t h e vicinity of the lower 
membrane (M2) unstable layers lg and lgB will develop. This is illustrated in greater 
detail by a model of the system shown in Fig. 2a and a sample interferogram in 
Fig. 2b (Kargol and Dworecki 1993). 

From a number of interferometric studies (Dworecki 1984; Kargol et al. 1986; 
Kargol and Dworecki 1993) it follows that the stable layers (ľ and VB) are of 
relatively large thickness t h a t increases in t ime. Large are also the falls in concen­
trat ion occurring on them. Thus the concentration difference AC" = C' — C " 
on membrane Mi is not great (Cg and C " are concentrations of the solutions at 
t h a t membrane surface, Fig. 2a). This indicates also t h a t t h e difference in osmotic 
pressure on that membrane is not great: 

An^ = RT-(c;-C9) 

In order to further explain t h a t situation, let us consider diffusion of a solute 
near the upper membrane ( M i ) . The solute's molecules, when leaving the layer 
ľ B cause its density t o become smaller than that of the solution Cg. So the layer 
remains stable, this being favoured by the force of gravity. Upon crossing the M i 
membrane, the molecules accumulate in the ľ layer. T h e density of t h a t layer 
becomes thus greater t h a n the solution density Cug of t h e upper compartment. 
T h a t layer is thus also stable in the field of gravity. The thicknesses of those layers, 
and also the concentration falls on them, will increase in t ime. Meanwhile, the 
concentration difference and thus the osmotic pressure difference on membrane M i 
will decrease to a small value (within a relatively short t ime). 

Different is the situation in the vicinity of the lower membrane (M2). There 
the molecules leaving the layer lgB cause its density to become smaller t h a n t h a t 
of the solution Cg of the middle compartment. Hence the layer is unstable to 
destruction due to gravity-induced convective flows K, K (Fig. 2a). 

Solute molecules which left the layer diffuse through the membrane and then 
permeate layer lg (under the membrane) creating a solution whose density is greater 
t h a n that of the lower compartment solution Cdg- T h a t layer is also unstable, and 
generates convective flows K, K. The flow generated insures t h a t the layers remain 
thin and the concentration falls on t h e m are not great. In general one can say t h a t 
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the solutions separated by membrane Mo are appreciably stirred by the convective 

flows. This has been confirmed by interferometric studies (Kargol and Dworecki 

1993), for instance the interferogram shown in Fig. 2b. Is should be added that the 

areas of the near-membrane layers are determined on interferogram proper curves 

of interferometric lines. 

In the situation discussed, on membrane A/2 there is a relatively large concen­

t ra t ion difference (AC'd = C'g — C'(l ) and thus a large osmotic pressure difference: 

An!/a = Rr.(c;-c;/fl) 

where C'g and C'd are concentrations at the faces of membrane Aio-

Figure 3. a. Theoretical model of graviosmotic system rilled with solution of density 
decreasing with increasing concentration, b. Exemplary interferogram performed with 
the use of water solutions of ethanol in the graviosmotic system (Kargol and Dworecki 
1993). 

The model shown in Fig. 3a refers to graviosmotic systems with solutions 

of densities decreasing with concentration. One can easily apply the discussion 

performed above to this model. Further, in the case when concentrations of such 

solutions satisfy the conditions: Ce > Cue and Ce > C<je, in the vicinity of the 
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upper membrane ( M i ) thin and unstable layers are formed (l'e and l'eB)- On the 
other hand, in the vicinity of the lower membrane (M2) stable layers (le and les) 
of relatively large and increasing thickness are formed. 

The model shown in Fig. 3a and the corresponding interferogram in Fig. 3b 
illustrate it in greater detail. It is easy to understand that there will be a large 
concentration difference AC'ne — C'e — C'ue at the upper membrane, and thus also 
a large osmotic pressure difference: 

Aľl'ue = RT.(C'e-C'ue) 

However, the concentration difference AC'de = (C'J — C'Je) and the osmotic pressure 
difference at the lower membrane 

AUl^RT-(C':-C'l) 

will remain small. The quantities C'e, C'ue, C'J and C'Je are concentrations at 
membrane faces. Volume flux Jv (the graviosmotic flux) generated in such systems 
will be directed downwards. 

Analytical description of graviosmotic flows 

a. Stationary graviosmotic flows 

In order to describe mathematical ly stationary graviosmotic flows, let us consider a 
definite model of t h e system. Let it be the model shown in Fig. 2a. It is concerned 
with a graviosmotic system whose density increases with rising concentration. In 
t h a t system we assumed that the concentrations Cg, Cug and Cdg satisfy the con­
centrations: Cg > Cug and Cg > Cdg. 

In order t h a t t h e graviosmotic flow be constant in time, the volumes Vu, Vm 

and Vd of the compartments, and thus the volumes of solutions, must be sufficiently 
large, with definite active surfaces of the membranes and permeation parameters. 

In the situation described, in vicinity of the upper membrane there will develop 
stable diffusive layers /' and ľ B, while in the vicinity of the lower membrane 
unstable layers lg and lgs will develop. Hence the osmotic pressure difference 
A n " 9 = RT-(C'g'—C'úg) at the upper membrane will be negligibly small as compared 
to the difference A n V = R T - (C'„ — C'd) which occurs at the lower membrane. Let 
us further assume t h a t the membrane's active surfaces are equal (Si — S2 — S) 
but differ in their coefficients of filtration (Lpi 7̂  Lp2), reflection {p\g 7̂  <T2g) and 
permeability (u>i 7̂  w2)- Now we can, according t o the Kedem and Katchalsky 
formalism (1958), for each membrane of the system write the following equations 
for volume flows: 

Jul = Lpl • aig • RT • (C/' 9 - C'g') + Lpl • (Pm - Pu) (4) 

J„2 = Lp2 • <J2g • RT • (C'g - C'dg) - Lp2 • (Pm - Pd) (5) 
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where: Pm, Pu and Pd are mechanical pressures in the respective compartments 
(Fig. 2a), aig, 02g are reflection coefficients for glucose. 

In a stationary s ta te the fluxes Jvi and J„2 are constant in time and equal to 
one another: 

Jvi = Jv2 = Jv — const. (6) 

Since the concentrations C and C'd formula (5) are most known, we have to 
modify that formula in such a way as t o replace those concentrations with Cg and 
Cdg- Equation (2) can be used as follows: 

jsm = " ^ 2 9 • RT • (C'g - C'dg) + (1 - a2g) • Č • Jv2 (7) 

where: C = 0.5-(C' +C'd ), j s m is t h e solute flux that permeates membrane AÍ2, and 
u>2g is permeability coefficient. We shall t reat membrane AÍ2 together with layers lg 

and lgB as a triple membrane. Assigning to the layers their respective permeability 
coefficients a>9 and W S B , we obtain the following permeability coefficient for the 
triple membrane: 

, __ ^9 • U9 B • U2g , . 
^sg ~ ; ; ( 8 ) 

^g ' UgB + u ; , • u>2g + LOgB • <^2q 

since, as follows from Kedem and Katchalsky (1963), t h e relation is fulfilled: 

1 _ 1 J_ 1 
uJsg U!q U)2g iOgB 

Hence we can write the following equation for the transport of solute across the 
triple membrane: 

j s s = -L08g • RT • {Cg - Cdg) + (1 - o2g)-Gs- J„2 (9) 

where Č , = 0.5 • ( C , + Cdg). 
If the concentration drops in the layers lg and lgs are equal, or differ only 

slightly, then it is easy to show t h a t C and C., are equal or almost equal (C ~ C„) 
which results from t h e interferogram given in Fig. 2b and also from other interfe­
rometric investigations (Kargol and Dworecki 1993). Taking this into account, and 
knowing that in stat ionary state j s „ , = j s s , we obtain, using equations (7) and (9), 
the following: 

c„ - c><lr, = ^ • (Cg - C,,,,) (10) 

W i t h this relationship equation (5) assumes the form: 

Jv2 = Lpo • (J2g • —— • RT • (C(/ — Cdg) — LP2 • {P„, - Pd) 
">2g 
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or 

Jv2 = LP2 • asg • RT • (Cg - Cdg) - LP2 • (Pm - Pd) (11) 

where 

<?sg = ~ - • o2g (12) 
W2g 

can be treated as a reflection pseudo-coefficient of the triple membrane. 

The coefficient asg can be determined in the same way as the coefficient 02g, 

provided the solutions are well stirred during measurement of &2g-

Solving now the set of equations (4), (6) and (11), the following expression for 

the stationary graviosmotic flow can be obtained: 

JV=C- [o-sg • RT • (Cg - Cdg) - o-lg • RT • (C'g' - C'^) - (Pu - Pd)} (13) 

where: £ = Lpi • Lp2 • (Lpi + L^)'1. 

From interferometric studies (Kargol and Dworecki 1993) and from studies 

performed with the method of volume flow and solute flow measurement (Kargol 

1978) it follows tha t : 
<~g~*~dg^>(~g ~~ ^Ug 

If so, then the second term on the right side of equation (13) can be left out as 

negligibly small, and the following expression is obtained: 

Jv = C • asg • RT • (Cg - Cdg) -C-(PU- Pd) (14) 

Abandoning this member is an essential simplification in the mathematical 

description of graviosmotic flow because we do not know concentrations C" and 

C" and we cannot modify equation (4) in the same way as it was done in relation to 

equation (5). The last difficulty results from the fact tha t the dissolved substance 

penetrates into layer Vg (Fig. 2a), but it does not leave the layer; it is cumulated 

in it. It means tha t the coefficient of penetration w' of this layer equals zero. In 

accord with equation (8) it also means that equal to zero is coefficient uisg of the 

triple membrane consisting of membrane Mi and layers /' and ľ B (Fig. 2a). 
If we assume t h a t Pu = Pd, then the last equation can be written: 

Jv=C-o-sg-RT-(Cg-Cdg) (15) 

It is easy to demonstrate that , based on the theoretical model shown in Fig. 3a, in 
the case of applying solutions of decreasing density with increasing concentration 
in the graviosmotic system, an adequate equation of t ransport has the form: 

Jv = C • ase • RT • ( C e - Cue) -C-(PU- Pd) (16) 
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where: ase — —^— • crie is reflection pseudo-coefficient, Ce, Cue are concentrations 
<^le 

(Fig. 3a). 

b. N on-stationary graviosmotic flows 

Let t h e subject of our considerations further be a graviosmotic system whose model 
is presented in Fig. 2a. 

Let us now assume t h a t the volumes of solutions Vu, Vm and Vd are adequately 
small with given surfaces of active membranes M i and M2 and given parameters of 
penetrat ion. In the presented situation t h e difference of concentrations (Cg — Cdg) 
occurring on the lower membrane will markedly disappear in t ime due to the ex­
istence of flux j , s of solute (Fig. 2a). Therefore, graviosmotic t ransport will also 
decay. Thus, in this case we observe non-stationary graviosmosis. Having in mind 
an analytical description of this t ranspor t , let us assume still tha t concentration 
difference (C'g — C') occurring on membrane M i is also negligible in this case in 
relation to concentration difference (C — C'd ) as well as to concentration differ­
ence (Cg — Cdg)- This phenomenon is confirmed among others by the results of 
experimental research presented in t h e next section of this paper. Our problem 
will be thus mainly reduced to finding an overt form of t h e dependence: 

(Cg - Cdg) = f (t) 

In order to obtain it, let us assume initially t h a t at the start (t = 0) the difference 
of concentrations of compartments B and C is: 

ACrfgO = CgO — Cdg0 

Let in t ime dŕ d m moles of solute penet ra te membrane M2 and layers lg and lqB- In 
consequence, solution concentration in compartments B and C of the graviosmotic 
system will have t h e values: 

r - r d m 

Cg - L g 0 - —-
vm 

Cdg = Cdgo + -rr 
Vd 

Substrating the above equation by sides and assuming t h a t Vm = Vd = V = const , 
one gets 

ACdq = ACdgo 77-

where ACdg = Cg - Cdg 

On the basis of t h e above equat ion we can write: 

d A C d 3 - ACdgo - ACdg = ^ (17) 
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where dACdg is change in time of the concentration difference of solutions at in­
tervals B and C. 

In order to simplify our considerations, let us assume t h a t the active surfaces 
of both membranes are equal: Si = 52 = S. Under this assumption, using the 
definition: 

d m 
s s = Šďt 

we can write equation (9) in the form 

d m = -Losg • RT • ACdg • Sdt + (1 - a2g) • Č~s • Jv2 • Sdt (18) 

As volume flux Jv2 is equal to the graviosmotic volume flux Jv, then the above 
expression (after considering equation (15)) assumes the form: 

d m = S[ACdg {-u)tg RT + (1 - a2g) • Cs • asg RT • C) -

-(l-CT2g)-C,-C-(Pu-Pd)]dt 

o 
After multiplying this equation by y, we get: 

2dm 2 5 . x „ ,. , 
— = — • (a • ACdg + b) dt (19) 

where a and b are given by formulas: 

a = -ujsg RT + (1 - <T2g) -Cs-o-sg-RTC (20) 

b=-(l-a2g)-Čs-C-(Pu-Pd) (21) 

On the basis of equations (17) and (19) we can write: 

a-ACdg + b~ VM {Zl) 

After integrating the last equation, we get: 

1 , / A ^ ^ 2 S t 

- • In (a • ACdg + b) = — 

Assuming that for t = 0, ACdg = &Cdgo, we find an integration constant 

z • In (a • ACdg + b) - — + G (23) 

G = -* • In (a • ACdg0 + b) 

Substituting the above expression into the formula (23) we get: 

a • ACdg + b f2Sat\ 

a • ACdgo + b 
exp \jr 
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From it we obtain the sought expression for ACdg as the function of time (t): 

ACd9 = {Cg - Cdg) = (ACdgo + £) • exp ( ^ \ - -a (24) 

Next substituting this equation into formula (14) we finally get: 

Jv — L • oSg • RT ACdgo + - • exp 
b\ /2Sat\ 

a r \ y 
• ; - : 

C-(PU- Pd) (25) 

where: C = Lpi • Lp2 • (Lp\ + L^)'1-
The above equation is the sought expression which describes non-stationary 

graviosmotic flows in the system whose model is shown in Fig. 2a. If we assume 
that (Pu — Pd) = 0, then this equation is reduced to the form: 

J„ =C-aeg-RT-ACdg0-exp(2^j (26) 

It should be added to the above presented considerations that if solution concen­
tration of the graviosmotic system is satisfied by the conditions: 

Cg < Cug and Cg < Cdg, 

then a considerable concentration difference will occur on the upper membrane 
(Mi) because solutions Cag and C9 separated by this membrane will be mixed 
convectively. However, the difference of solution concentrations on the lower mem­
brane (M2) will be negligible. In the surrounding of this membrane stable near-
membrane layers will be formed. 

Assuming that 

\-^gRT-ACdg\-»\(l-o-2g)-Ci-Jv\ (27) 

we can abandon member (1 — aig) • C, • J„ in equation (9). Then we will write: 

d?77 = —tob() • RT • ACdg • S dŕ 

Taking this into consideration, we get that constants expressed by equations (20) 
and (21) are: 

a = - u \ s • RT and 6 = 0 (28) 

In connection with the above, equation (26) assumes the following simplified form: 

JV = C- a,(J • RT • ACdga • exp (-— • UJS9 • RT • ŕ J (29) 



Analytical Description of Graviosmotic Volume Flows 121 

Considerations analogous to those presented above with reference to the gravios­

motic system presented in Fig. 2a can also be made for a system whose theoretical 

model is shown in Fig. 3a. 

Adequate equation of non-stationary graviosmotic transport has the form: 

Jv = £ • ase • RT • ACue0 • exp \ - ~ • use -RT-t) (30) 

where: ase - —^ • cr2e, ACue0 - Ce - Cue (Fig. 3a). 

Exemplary results of the experimental investigation 

Having in mind the aim to prove the correctness of the equations of graviosmotic 

transport which occurs both stationarily and non-stationarily, a proper experi­

mental investigation was performed. Some selected results of this investigation, 

obtained by a s tandard method (Kargol 1978) are presented in Figs. 4, 5, 6 and 

7. The results of the investigation represented in Figs. 4 and 5 concern stat ionary 

graviosmosis. They were obtained using a graviosmotic system built on two nephro-

phane membranes of identical coefficient of filtration (Lp\ = Lp2 = Lp = 5 • 10~ 1 2 

m 3 N _ 1 s _ 1 ) and equal active surface (Si = S2 — S) which were 3.36 cm2 each. 

The volume of compartments A, B and C of the system and therefore the volumes 

of solutions were sufficiently high and amounted to Vu — V,„ — Vd = 200 cm 3 . 

Compartments A and C were filled with pure water, whereas the middle interval 

(B) with an aqueous solution of glucose of concentration Cg = 0.3 mol/1, i.e. a 

solution of density increasing with increasing concentration. The previously de­

termined pseudo-coefficient of reflection o~Kg of these membranes (for glucose) was 

°\s9i = °~sg2 = o-sg = 0.035. 

The above presented experimental conditions secured stat ionari ty of the pro­

cess of graviosmosis for sufficiently long durat ions. This was confirmed by the 

exemplary results of the investigation shown in Fig. 4. Plot 1 in this figure is an 

experimental plot obtained through direct measurements of flux J„. Plot 2 is a 

theoretical plot made on the basis of equation (15), i.e. the following equation: 

J„ = C • 0-Sg • RT • (Cg — Cdg) 

where: £ = 0.5 • Lp, T = 300 K. 

Plot 2 is located in a given set of coefficient a little higher than plot 1. This 

is due to the existence of some negligible difference of osmotic pressures ATl't'ld on 

the upper membrane (Afi). In spite of this it can be assumed tha t equation (15) 

describes stat ionary graviosmotic flows with a sufficiently good approximation. 

An analogous experimental investigation has ben performed for different con­

centrations of Cg of the glucose solution. On this basis a plot of dependences 
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F igure 4. Stationary graviosmotic flows (1 - experimental plot, 2 - theoietical plot). 
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Figure 5. Dependence of stationary graviosmotic flow on concentration Cs mol/1 of 
glucose solution. 

was made J„ = f(Cg). It is represented by straight line 1 in Fig. 5. Plot 2 in 

this figure represents a dependence obtained from calculations performed on the 

basis of equation (15). This plot is also located in a given set of coefficients, a 

little above plot 1. In spite of this fact, also in this case equation (15) is suffi­

ciently adequate in relation to the real s tate . Practically, the same conformity of 

the theoretical and experimental investigation was obtained in relation to equation 

(16) concerning graviosmotic flows of solutions of density decreasing with increas­

ing concentration. A proper investigation was performed using the example of 
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Figure 6. Dependences: 
C„(t) - plot 1, Cdg(t) ~ plot 
2 and Cug(t) - plot 3. 

0.2 

0.1 

aqueous solutions of ethanol (Kargol 1978). As far as non-stationary graviosmosis 
is concerned, first measurements of concentrations of solutions in the particular 
compartments were made in the function of time, i.e. Cg(t), Cdg(t) and Cug(t). 
The exemplary results of this investigation are presented in Fig. 6. They were 
obtained on a graviosmotic system based on two cellophane membranes Mi and 
M2 of equal filtration coefficient (Lpi = Lp2 = Lp = 0.85 • 10~12 m 3 N - 1 s - 1 ) , 
pseudo-coefficient of reflection (<7ssi = erS92 = crsg = 0.1) and equal coefficient of 
penetration (wS9i = wS92 = wsg = 1.7 • 10~10 mol N _ 1 s _ 1 ) . These membranes 
of active surfaces Si = 52 = S = 3.36 cm2 were separated by compartments A, 
B and C of relatively small volumes which equalled 20 cm3 each. The middle 
compartment was filled with the solution of glucose of concentration Cg = 0.25 
mol/1 (i.e. a solution of density increasing with increasing concentration). Com­
partments A and C were filled with pure water. Curve 1 expresses dependence 
Cg (t) which illustrates decay in time of the solution concentration in the middle 
compartment. Curve 2 is a dependence Cdg (t) and curve 3 a dependence Cug 

(t). The last dependence indicates that increase in the solution concentration on 
the upper compartment is negligibly small. It means that there must be a small 
difference of solution concentrations on the upper membrane. It is understandable 
because in the surrounding of this membrane so-called stable diffusion layers are 
generated. On the other hand, curve 2 (Cdg (t)) is the evidence that on the lower 
membrane a high difference of solution concentration occurs which decreases in 
time. In the surrounding of this membrane intramembrane layers are formed. This 
investigation confirms the correctness of a theoretical model constructed on the 



124 Kargol 

Figure 7. Dependence 
Jv(t): 1 - experimental plot, 
2 - theoretical plot. 

1 x10 

2AJv- 0.2 «10 tm/s] 

t [h] 

basis of the interferometrical investigation as shown in Fig. 2a. Using the same set 
of membranes, measurements were done of graviosmotic flow Jv in the function of 
time. A graphic representation of this function is plot in Fig. 7. Plot 2 in the same 
figure is dependence Jv (t) obtained theoretically on the basis of equation (29), i.e. 
the following equation: 

Jv = £ • aag • RT • ACdgo • exp í -
25 

V 
tosg -RTt 

where: £ — 0.5 • Lp, T — 300 K, 5 = const., and V = const. Analyzing both 
plots it is easy to notice quite a good conformity of the results of the experimental 
and theoretical investigation. It means that equation (29) is applicable with the 
exception of some (relatively small) initial time of graviosmosis. Analogously, good 
conformity of the results of the experimental and theoretical investigation was 
obtained for other graviosmotic systems and other solutions, including a solution 
of ethanol whose density decreases with increasing concentration. 

Conclusion 

1. Taking into consideration the results of the investigation of graviosmosis car­
ried out by the interferometrical method and the method of measurement of volume 
streams and concentration measurements, a full physical interpretation of this phe­
nomenon was presented in this study. Within this interpretation two theoretical 
models of graviosmotic systems were constructed. One concerns systems filled with 
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solutions of density increasing with increasing concentration and the other with sys­

tems in which solutions of density decreasing with increasing concentration were 

applied. 

2. Using these models and thermodynamical formalism of Kedem and Katchal­

sky (1958), definite equations were developed in order to describe in a compre­

hensive way graviosmotic flows. These equations describe both stat ionary and 

non-stationary flows and graviosmotic flows of solution of density increasing and 

decreasing with increasing concentration. 

3. Furthemore, experimental verification of these equations was presented in the 

paper. I t was shown tha t they describe graviosmotic flows with fairly good approx­

imation. 

4. Our interest in graviosmosis is mainly due to biophysical aspects. It has led us 

to the development of the so-called graviosmotic hypothesis (Kargol 1978, 1992, 

Przestalski and Kargol 1987). According to this hypothesis water in plants could be 

t ransported through xylem vessels using graviosmotic mechanisms. Speaking about 

these mechanisms we mean graviosmotic pumping of water against gravitation 

force, circulation of water as well as asymmetry and reinforcement of graviosmotic 

t ransport (Kargol 1978, 1992, Przestalski and Kargol 1987). 

5. We also notice a need to call a t tent ion to this phenomenon in a number of 

technological membrane processes. (S t ra thmann 1981) in which a significant effect 

of gravitation force can be seen on the s ta te of near membrane diffusion layers. 
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