Interaction of Carbonyl Cyanide 3-chlorophenylhydrazone with Cytochrome c Oxidase.

M. BONA¹, M. ANTALÍK¹ ², Z. GAŽOVÁ¹, A. KUCHÁR¹, V. DADÁK³, D. PODHRADSKÝ²

¹ Institute of Experimental Physics, Department of Biophysics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovakia.
² Department of Biochemistry, Faculty of Sciences, Šafárik University, Šrobárova 37, 040 01 Košice, Slovakia.
³ Department of Biochemistry, Faculty of Sciences, Masaryk University, Kollářská 2, 611 37 Brno, Czech Republic.

Abstract. Cytochrome c oxidase binds protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP) with high affinity. There are 1.46 high-affinity binding sites per cytochrome c oxidase for CCCP with dissociation constant $2.7 \cdot 10^{-7}$ mol/l. The bond between the CCCP and cytochrome c oxidase accomplishes through the group on cytochrome c oxidase with pK_a 6.64 and is based on the electrostatic interaction. Interaction of CCCP with low-affinity binding sites of cytochrome c oxidase induces the shift of the anion CCCP spectrum to UV-region. The similar effect is characteristic for CCCP interaction with protons. Lipophilic non-dissociated derivative NCH₃CCP is not binding to cytochrome c oxidase.

Key words: Cytochrome c oxidase — Carbonyl cyanide phenylhydrazone

Introduction

Carbonyl cyanide phenylhydrazones belong to the weak acids and are effective uncouplers of oxidative phosphorylation. They are commonly used in the studies of various membrane transport processes (Heytler and Prichard 1962, Hanstein 1976, Terada et al. 1981, 1988, Yagi and Hatefi 1989). There are some important differences between the effects of various ionophores in model phospholipid bilayer and in natural membrane systems containing proteins which cannot be solely explained by the differences in the above mentioned properties.

In two papers (Katre and Wilson 1977, 1978) it was shown that CCP deriva-
tives might interact with mitochondrial proteins (cytochrome c oxidase, bc₁ complex, H⁺ ATPase), but mechanisms of their interaction are still poorly understood. It has been assumed by Hanstein and Hatefi (1974) that interaction of different protonophores (dimtrophenols) with mitochondrial membrane proteins is an electrostatic one and occurred between the negatively charged protonophore molecules and the positively charged groups in the proteins.

Electrostatic interaction are characteristic for the cytochrome c oxidase, an enzyme of the mitochondrial respiratory chain. The accessible information mostly concerns the interaction with cytochrome c, where positively charged lysine groups of the cytochrome c are binding with the negatively charged carboxyl groups of the cytochrome c oxidase (Osheroff et al. 1980). This type of interaction has been assumed to be the bond between the valinomycin - K complex and cytochrome c oxidase (Steverding and Kadenbach 1989). Not much information concerns the interaction of anions with cytochrome c oxidase. The problem consists in the presence of the electrostatic barrier for anions because the total charge of the cytochrome c oxidase is negative at a neutral pH.

This paper reports on the interaction of the two derivatives, CCCP and NCH₃CCP, with the cytochrome c oxidase. We point out that CCCP (at concentrations usual for the study of its transporting properties) is bound to this enzyme and electrostatic interactions between positively charged groups of cytochrome c oxidase and negatively charged CCCP occur in this process.

Abbreviations

CCCP, carbonyl cyanide 3-chlorophenylhydrazone, CCP, carbonyl cyanide phenylhydrazone, NCH₃CCP, 4-chlorophenyl-N-methylhydrazonopropandinitrile, FCCP, carbonyl cyanide 4-trifluoromethoxyphenylhydrazone, HEPES, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, MES, 2-(N-morpholino)ethane sulfonic acid.

Materials and Methods

The bovine mitochondrial cytochrome c oxidase (obtained from Dr. Musatov) was prepared according to Yonetani (1960) and stored at the temperature of liquid nitrogen in 0.1% Tween 80 at the pH 7.4. NCH₃CCP was prepared as described previously (Antalik et al. 1988). CCCP, HEPES, MES and Tween 80 were obtained from Sigma and laurylmaltozid from Calbiochem.

The binding of CCCP and NCH₃CCP to cytochrome c oxidase was studied as follows: 0.1-0.2 mmol/l stock solution of cytochrome c oxidase was dissolved in the mixture of 0.1% Tween 80 and 50 mmol/l HEPES, pH 7.4. The mixture was added to buffers of different pH values containing known concentrations of CCCP and NCH₃CCP. In about five minutes, the release of the detergent bound to the cytochrome c oxidase caused the aggregation of the cytochrome c oxidase and, subsequently, the binding of the studied ligands. The concentration of free ligands was obtained spectrophotometrically after the centrifugation of this aggregate cytochrome c oxidase with the binding ligand (7 mm, 3000...
The concentration of cytochrome c oxidase was determined by using the differential extinction coefficient for reduced minus oxidized oxidase $\Delta \varepsilon = 25.3 \text{ mmol}^{-1} \cdot \text{I. cm}^{-1}$ at 605 nm (Vanneste 1966).

The spectral differences were performed by spectrophotometer Shimadzu UV 3000. First, the spectrum of CCCP in buffers of different pH and containing 0.1% laurylmaltozid were registered and stored into the memory of the spectrophotometer. Then, cytochrome c oxidase was added to the sample and reference cuvettes and after 1 minute the difference spectrum was recorded. At the end of the first minute after mixing the first fast change of the CCCP spectrum was observed. The next very slow changes were not studied. If the influence of the pH on the spectrum of anion CCCP should be observed, the spectrum of anion CCCP at pH 7.4 had to be taken into the spectrophotometer memory and the difference spectra caused by the change of pH were recorded. The pH was decreased by small additions of concentrated HCl (2 µl). All the measurements were performed at the 25°C.

Associative curve of CCCP binding on cytochrome c oxidase was fitted as a linear product of the two dissociative curves (dissociation of the CCCP and the cytochrome c oxidase) by the program FUMILI from the CERN LIBRARY. The other experimental conditions are described in the legends to the figures.

Results

Addition of concentrated cytochrome c oxidase solution to the water medium without detergents induces aggregation of the enzyme and causes turbidity of the medium. When CCCP is present, its binding to cytochrome c oxidase results in forming a complex with cytochrome c oxidase. After centrifugation at 3000 × g (30 minutes, 20°C) it is possible to determine the concentration of the free CCCP in the supernatant. The difference between free and total CCCP concentration corresponds to protonophore bound to enzyme. Fig. 1 presents the Scatchard plot dependence of CCCP binding to cytochrome c oxidase. From the non-linear dependence, the existence of binding sites with different affinities can be deduced. 1.46 binding sites per cytochrome aa₃ were found for the high-affinity binding with a dis-

![Figure 1. Scatchard plot of the binding of the CCCP to cytochrome c oxidase determined by centrifugation. LB - CCCP bound, LF - CCCP free, ET - cytochrome c oxidase total; 50 mmol/l HEPES, pH 7.4, 0.002% Tween 80, 5 mmol/l MgCl₂.](image-url)
Figure 2. The relation between the amount of bound CCP and concentration of cytochrome c oxidase. (1) $2.4 \cdot 10^{-6}$ mol/l CCP (100%), (2) $2.4 \cdot 10^{-6}$ mol/l NCH$_3$CCP (100%); 50 mmol/l HEPES, pH 7.4, 0.002% Tween 80.

Figure 3. The dependence of the amounts of bound CCP and NCH$_3$CCP (full and empty circles) on pH. (1) the dissociative curve of the CCP; (2) the calculated associative curve of the group which interacts with CCP; (3) curve used for the simulation of the theoretical course of interaction of CCP and cytochrome c oxidase calculated by equation $(x^a/x^a + pK_1 \cdot pK_2/a + pK_2 + pK_3)e + f$, where pK_1 is pK of the CCP, pK_2 is pK of the group of the cytochrome c oxidase, a and c are the slopes of the increasing and decreasing curves, e and f are coefficients. Values calculated for this curve are: $pK_1 = 5.98$, correction factor (c.f.) = 1.2526, $pK_2 = 6.64$, c.f. = 3.3, $a = 12.796$, c.f. = 1.2526, $c = 14.088$, c.f. = 1.6, $e = 100$, c.f. = not given, $f = 22.7$, c.f. = 3.4; 50 mmol/l HEPES, 50 mmol/l MES, 0.1% laurylmaltozid.

and c are the slopes of the increasing and decreasing curves, e and f are coefficients. Values calculated for this curve are: $pK_1 = 5.98$, correction factor (c.f.) = 1.2526, $pK_2 = 6.64$, c.f. = 3.3, $a = 12.796$, c.f. = 1.2526, $c = 14.088$, c.f. = 1.6, $e = 100$, c.f. = not given, $f = 22.7$, c.f. = 3.4; 50 mmol/l HEPES, 50 mmol/l MES, 0.1% laurylmaltozid.

association constant $K_D = 2.7 \cdot 10^{-7}$ mol/l. Additional binding of the protonophore to other sites on cytochrome c oxidase takes place at higher CCP concentrations. The dependence of the amounts of CCP (dissociated derivative) and NCH$_3$CCP (non-dissociated derivative) bound when increasing the total concentration of enzyme are given in Fig. 2. At pH 7.4 increase in concentration of cytochrome c oxidase caused an increase of the amount of CCP bound to cytochrome c oxidase and no binding of non-dissociating NCH$_3$CCP was observed. From Fig. 2 it is evident, considering the fact that lipophilicity of NCH$_3$CCP (log $P_{7.4} = 2.62$) is higher than that of CCP (log $P_{7.4} = 2.06$), that interactions of CCP with cytochrome c oxidase are probably of electrostatic nature.

Experiments to find the dependence of CCCP binding to cytochrome c oxidase
on increasing pH values were undertaken to characterize the groups of cytochrome c oxidase which are participating in the interaction. From Fig. 3 it follows that by decreasing pH from 9 to 6 the amount of bound CCCP to cytochrome c oxidase increases. However, below pH 6 binding of the protonophore tends to decrease. The comparison of this dependence with the dissociation curve of CCCP (see Fig. 3) allows to assume that this decrease is caused by decreased concentration of dissociated CCCP. From the comparison between the pH dependence of the dissociation curve of CCCP and the quantity of the CCCP bound we can suggest that CCCP interacts with a protonated charged group of cytochrome c oxidase with pK of about 6.64. This is very close to a value found for histidine residues. The small binding of the non-dissociating derivative (NCH₃CCP) to cytochrome c oxidase in the pH range studied refers to the electrostatic origin of the interaction between them. Since there is a relatively high value of binding CCCP at pH higher than pH 9, the lipophilicity of CCCP takes place in the interaction, too.

Fig. 4 shows an effect of the pH on the absorption spectra of CCCP. The shift of the spectrum to the shorter wave-lengths is observed on acidification. The presence of cytochrome c oxidase dissolved in 0.1% laurylmaltozide (at pH 7.4) brought about similar spectral changes of CCCP (Fig. 5). We suppose that the low-affinity binding sites of the CCCP on cytochrome c oxidase can be characterized by these changes. Despite the existence of several binding sites on cytochrome c oxidase,
Figure 5. Difference spectra of CCCP after addition of the cytochrome c oxidase; 0.73·10^{-6} mol/l cytochrome c oxidase, 50 mmol/l HEPES, pH 7.4, 0.1% lauryl maltosid; CCCP concentration (1) 0.8·10^{-6} mol/l; (2) 2·10^{-6} mol/l; (3) 4·10^{-6} mol/l; (4) 8·10^{-6} mol/l; (5) 16·10^{-6} mol/l; (6) 3.2·10^{-5} mol/l; (7) 6.4·10^{-5} mol/l.

The maximum and minimum of the difference spectra at various concentrations of the uncoupler hold their positions as well as isobestic points.

The dependence of the amplitude of absorption changes of CCCP on the CCCP concentration is non-linear (Fig. 6). At a constant ratio of CCCP to cytochrome c oxidase the pH dependence of these differences suggests a character of their interaction – for low-affinity sites (Fig. 7). The difference increases by decreasing the pH value until pH 6. Below this pH a steep decrease in the difference spectrum is observed. Also in this case, cytochrome c oxidase addition to NCH_3CCP does not bring about any significant changes in the absorption spectrum of the compound in agreement with the assumption that there is no interaction between the compound and the cytochrome c oxidase. These data, as well as those for high affinity binding sites, are in support of the suggestion that the interaction of CCCP with the histidine residues of cytochrome c oxidase may be of electrostatic character. The existence of some small optical changes as observed at pH 9 may indicate that
Figure 6. The spectral change (Delta ABS = ABS$_{max}$ - ABS$_{min}$) of the CCP derivatives in the presence of cytochrome c oxidase; (1) CCCP, (2) NCH$_3$CCP; 0.73 • 10$^{-6}$ mol/l cytochrome c oxidase, 50 mmol/l HEPES, pH 7.4, 0.1% laurylmaltozid.

Figure 7. The spectral change (Delta ABS = ABS$_{max}$ - ABS$_{min}$) of the CCCP in the presence of cytochrome c oxidase on the pH; 0.73 • 10$^{-6}$ mol/l cytochrome c oxidase, 50 mmol/l HEPES, 50 mmol/l MES, 0.1% laurylmaltozid.

CCCP anion can react also with lysine residues of cytochrome c oxidase or interact with cytochrome c oxidase hydrophobically.

Discussion

There are some problems in the study of interaction between low-molecular lipophilic ligands and membrane proteins. At natural conditions the proteins are bound to membrane and addition of the lipophilic ligands causes a high ligand absorption by the lipidic part of the membrane. It complicates characterization of assumed fine effects due to interaction of ligands with proteins. For proteins isolated and dissolved in water by means of detergents, the presence of regions occupied by detergents at the protein surfaces increases the unspecific interaction of ligands with proteins, as well as in the case of membrane. The mentioned effects can be minimalized using the membrane proteins isolated with the lowest quantity of phospholipids and detergents. For aggregation of isolated membrane proteins after
their addition into medium without detergents, important is a fact that aggregates
do not create closed spaces containing free ligands. Therefore it is necessary to use
a comparative material with similar properties such as studied ligand, except one
(for example a charge) which is crucial for a possible interaction. Further assump-
tion is a minimal change of the protein structure during aggregation. Cytochrome
c oxidase is a large protein complex whose dominant part of the surface is localized
outside the membrane (Saraste 1990). It allows to observe the electron transport
activity of cytochrome c oxidase without the presence of detergents (Ambe and
Venkataraman 1959).

In water cytochrome c oxidase creates dimers in the presence of detergents
as well as other aggregation states (Michel and Bossard 1989). They can only be
separated from solution by ultracentrifugation (Garber and Margoliash 1990). The
addition of the cytochrome c oxidase solution containing some detergent into wa-
ter solution without detergents results in gradual loss of the detergent molecules
from the enzyme surface. This brings about aggregation of the enzyme to larger
formation which can be fully removed from the solution by low speed centri-figua-
tion. This fact is useful for the investigation of the interaction of ligands with
cytochrome c oxidase in processes which are faster than the process of releasing
detergent from the surface – i.e. electrostatic interactions. The formation of aggre-
gates of cytochrome c oxidase apparently does not create a non-specific adsorption
envelope of ligand molecules. This can be seen from the fact, that a lipophilic anal-
log N-methyl carbonyl cyanide phenylhydrazone (NCH3CCP) is not removed from
solution by centrifugation. The ability of the CCCP binding to the cytochrome c
oxidase is dependent on pH of the medium.

The interaction between CCCP and cytochrome c oxidase (dissolved in water
with the aid of detergents) has been studied by means of following the changes in
absorption of the ligand as well. The spectral changes of CCCP derivatives after
reaction with biological systems have been followed using three different methods.
First, the reaction of the CCCP with thiols is accompanied by a red-shift of the
spectrum and is pH dependent (Šturdík et al. 1985). The rate of additional reac-
tion of CCCP with thiols is rather slow in comparison with the momentary rate of
interaction of the CCCP with the cytochrome c oxidase. The second system is a
solvent effect due to the spectral changes of the CCCP derivative. The interaction
of CCCP with liposome causes the red-shift of the spectrum typical for the anion
form of the derivative as well as for the non-dissociated form (Bakker et al. 1975).
Thirdly, the spectrum of the anion CCCP is changed by cations. Binding of protons
causes a large shift of the spectrum to the shorter wave lengths for anion CCCP as
well as for other CCP derivatives which enable determination of their dissociation
constants (Šturdík et al. 1985). On the other hand, the red-shift of the spectrum
of the FCCP derivative is induced by the complex of the valinomycin with K+
(O'Brien et al. 1978). From the above mentioned data it is evident that the shift
of the CCCP spectrum cannot determine the type of interaction. That is why it is necessary to use an analog which is not to be dissociable and possesses a similar lipophilicity. Since the spectrum of the analog in the presence of cytochrome c oxidase does not change pH values at all, we conclude that the CCCP is bound to the cytochrome c oxidase electrostatically. The partners of the interaction may be the positively charged groups of histidine and some of lysine. The electrostatic basis of the interaction of the CCCP and its derivatives can be assumed also for other membrane proteins of the respiratory chain – e.g. for the H⁺-ATPase. This type of interaction between the uncouplers and proteins of the inner mitochondrial membrane was assumed in the paper (Hanstein and Hatefi 1974). Our results suggest the importance of the CCCP and other uncouplers on the transport activity of the cytochrome c oxidase and other mitochondrial proteins. The activity is influenced by changing the properties of the positively charged groups on the protein surface and by decreasing the concentration of free uncoupler which is affected in the transfer of the protons across the membrane.

Acknowledgements. The thank to Dr. A. Musatov for the cytochrome c oxidase and Dr. A. A. Konstantinov for his critical reading of the manuscript.

References

Michel B, Bossard H R (1989) Oxidation of cytochrome c by cytochrome c oxidase Spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism Biochemistry USA 28, 244–252
Saraste M (1990) Structural features of cytochrome c oxidase Quart Rev Biophys 23, 331–366
Steverding D, Kadenbach B (1989) Valinomycin binds stoichiometrically to cytochrome c oxidase and changes its structure and function Biochem Biophys Res Commun 160, 1132–1139
Vanneste W H (1966) The stoichiometry and absorption spectra of components a and a3 in cytochrome c oxidase Biochemistry USA 5, 838–848

Final version accepted November 23, 1993