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Abstract. Results of studies on the modulation of skeletal muscle contraction by 
phosphorylation of myosin regulatory light chains and by exchange of mag
nesium for calcium in myosin heads were reviewed. The polarized fluorescence 
method was used in these studies, and conformational changes of contractile 
proteins accompanying modulation of skeletal muscle contraction were inves
tigated. It was found that both the exchange of bound magnesium for calcium 
on myosin heads and the phosphorylation of myosin regulatory light chains 
control the ability of myosin heads to induce, upon binding to actin, conforma
tional changes of thin filament leading to decrease or increase of its flexibility. 
The changes in actin filament flexibility may be caused by alteration of both 
the inter- and the intramonomer structural organization. 
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Introduction 

As generally assumed, the interaction of myosin filamets with actin filaments 
coupled with ATP hydrolysis is the basis of muscle contraction (Huxley and 
Niedergereke 1954; Huxley and Hanson 1954; Huxley 1957; Huxley 1969; 
Huxley and Simmons 1971). During these processes globular regions of myosin 
molecules (myosin heads) undergo conformational changes concomitant with 
the movement of thin filaments of actin past thick filaments of myosin (Huxley 
and Simmons 1971 and the references therein). 

However, it remains unclear whether the movement of myosin cross-brid
ges or that of actin monomers, or both, are involved in the process of force 
generation. On the basis of ultrastructural studies of muscle Huxley (1969) 
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proposed that the myosin head bound to actin changes in orientation with 
respect to the axis of the thin filament, and pulls the myosin filament forward. 
This rotating myosin head model was tested in time-resolved X-ray difraction 
studies (Huxley and Faruqi 1983; Huxley and Kress 1985), EPR experiments 
(Thomas and Cooke 1980; Cooke et al 1982, 1984; Goody and Holmes 1983), 
and using polarized fluorescence methods (Aronson and Morales 1969; Boro
vikov et al. 1971; Borejdo et al. 1979; Yanagida 1981; Ajtai and Burghardt 
1986). 

Harrington (1971, 1979) and Ueno and Harrington (1986) proposed an 
alternative hypothesis of force generation, namely, a helix-coil transition model. 
They suggested that the conformational change in the "hinge" portion of the 
myosin molecule is the force-generating mechanism. However, Hynes et al. 
(1987) reported that short heavy meromyosin lacking the "hinge" region and 
incapable of forming thick filaments nevertheless moves along Nitella actin 
cables. Toyoshima et al. (1987) showed that myosin subfragment 1 is sufficient 
to cause sliding movement on actin filaments in vitro. 

Moreover, tension development can be observed during interaction of an 
actin filament with myosin subfragment 1, and the force exerted is comparable 
to that developed in the presence of intact myosin molecules (Kishino and 
Yanagida 1988). For these reasons the Harrington theory should be abandoned. 

Thus, it seems to be more likely that the movement of myosin filaments 
along actin filaments may be caused by changes of reorientation of myosin 
heads (or their segments) to the axis of thin filaments (Huxley and Kress 1985; 
Hynes et al. 1987; Toyoshima et al. 1987), and/or by structural alteration of 
actin filaments (Yanagida et al. 1974, 1978; Borovikov et al. 1974, 1990; 
Borovikov and Chernogriadskaya 1979; Yanagida 1984) as postulated by 
several authors. 

In vertebrate skeletal muscle, muscle contraction at the molecular level 
seems to be regulated by calcium-dependent changes in the thin filament, and 
in smooth and scallop muscles, it seems to be due to conformational changes in 
myosin light chains induced by calcium-dependent phosphorylation of these 
light chains, and/or by calcium binding (Ebashi and Endo 1968; Adelstein and 
Conti 1975; Aksoy et al. 1983; Sobieszek and Small 1976, 1977; Kendrick-Jones 
et al. 1976; Chantler and Szent-Gyórgyi 1980). 

However, some recent studies have suggested the presence in vertebrate 
skeletal muscle of an additional calcium-dependent system linked to the thick 
filament, influencing the interaction of myosin cross-bridges with actin thin 
filaments (Haselgrove 1975). The nature of this thick filament-linked skeletal 
muscle contraction modulating system is at present not clear. There have been 
some observations suggesting the influence of calcium binding to the regulatory 
light chains on the contractile properties of skeletal muscle (Haselgrove 1975; 
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Lehman 1978). The regulatory role of Ca2+ binding to myosin was postulated 
on the basis of Ca2 + -dependent changes of the myosin-F-actin interaction 
(Werber and Oplatka 1974; Borovikov etal. 1982; Borovikov and Karandashov 
1983). 

According to the studies of Bagshaw and Reed (1977) the slow dissociation 
of divalent metal ions from myosin regulatory light chains indicates that the 
divalent metal binding site of skeletal muscle regulatory light chains cannot be 
involved in the regulation on the known time scale of activation. 

The conformational changes of regulatory light chains due to Ca2+ binding 
(Alexis and Gratzer 1978) may, however, induce some structural changes in the 
myosin heads. 

The existence of calcium and calmodulin dependent myosin light chains 
kinase in skeletal muscle cells (Pires and Perry 1977) stimulated studies concern
ing myosin light chain phosphorylation and the actin-myosin interaction. How
ever, the modulatory role of myosin phosphorylation remains unclear. Manning 
and Stull (1982), Klug et al. (1982), and Moore and Stull (1984) have shown a 
correlation between the potentiation of isometric twich tension and myosin 
phosphorylation. However, the correlation between the shortening velocity of 
intact skeletal muscle and myosin phosphorylation was not confirmed by Butler 
etal. (1983). 

A modulating effect of myosin phosphorylation on myosin-actin interaction 
was shown by the observation of the "arrowhead" structure of actin filaments 
decorated by phosphorylated and dephosphorylated heavy meromyosin (Step-
kowski et al. 1985a). Claims concerning the influence of myosin phosphoryla
tion on the interaction of isolated contractile proteins have not been fully 
convincing (Perry 1979; Pemrick 1980; Ka.kol et al. 1982; Michnicka et al. 1982; 
Cardinaud and Ka.kol 1985). 

The effect of myosin phosphorylation seems to depend on several factors 
(Stepkowski et al., 1985b). 

Pulliam et al. (1983) have found a correlation between calcium sensitivity 
of Mg2+-ATPase of myosin complexes with pure actin and the phosphorylation 
of myosin regulatory light chains. 

Similarly, changes of some contractile properties of skeletal muscle seem to 
be dependent on Ca2+ binding and myosin phosphorylation (Persechini et al. 
1985; Sweeney and Stull 1986; Wrotek et al. 1989). 

We shall show in this paper that the cooperation of Ca2+ binding and 
myosin light chain phosphorylation in modulating myosin cross-bridge interac
tion with actin filaments can be confirmed by studying conformational changes 
of contractile proteins using the polarized fluorescence method. 
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Conformational changes of contractile proteins and modulation of myosin-actin interaction by myosin 
phosphorylation and by the exchange of Ca: 4 for bound Mg2' in myosin heads 

Measurements of polarized fluorescence emitted by intrinsic and extrinsic 
fluorophores located in myosin heads or in actin filaments enabled the observa
tion of conformational changes of contractile proteins in various physiological 
states of the muscle (Aronson and Morales 1969; Dos Remedios et al. 1972; 
Borejdo et al. 1979; Borovikov and Chernogriadskaya 1979; Yanagida 1984, 
1985; Borovikov et al. 1971, 1974. 1978; Borejdo and Putnam 1977; Borovikov 
1980; Wilson and Mendelson 1983; Prochniewicz-Nakayama et al. 1983; 
Miyanishi and Borejdo 1989; Ajtai and Burghardt 1986, 1989). 

Studies of polarized fluorescence from intrinsic tryptophans of F-actin and 
that from extrinsic fluorophores bound to actin or to myosin heads in single 
"ghost" fibres complexed with phosphorylated or dephosphorylated heavy 
meromyosin in the presence of Mg2 + , and at low or high concentrations of Ca2+, 
provide further information about the modulation of the actomyosin interac
tions under phosphorylation and Ca2+ binding (Borovikov et al. 1986a; Kqkol 
et al. 1987; Borovikov et al. 1987; Szczesna et al. 1987; Borovikov et al. 1988). 

Mathematical models proposed for the analysis of experimental data ob
tained by fluorimetrical methods have enabled the characterization of con
formational changes in terms of polarized fluorescence parameters (Rozanov et 
al. 1971; Tregear and Mendelson 1975; Mendelson and Morales 1977; Yanagi
da and Oosawa 1978; Morales 1984; Burghardt 1984). 

The models assume that absorption (A) and emission (E) transitions of 
either intrinsic or extrinsic fluorophores incorporated into sarcomeric structures 
behave like dipolar oscillators, and that the incorporation is either into a regular 
assay (e. g. a helix) or is totally random. It is further supposed that the 
oscillators can be excited and observed along well-defined Cartesian directions 
\ and j , so that the observed intensity is ,/>. The Z-axis is taken as the fiber axis. 

In Fig. \A the excitation is represented along the positive Y-axis. The 
directions of the parallel (||) and penpendicular (_L) components of this light are 
shown. It is assumed that the fiber lies along the Z-axis, and the actin filament 
along the W-axis, which is at a polar angle O with the Z-axis. Fig. \B shows 
the coordinate system U-V-W, related to the X-Y-Z system by Euler rotation. 
In the U-V-W system, the absorption and emission dipoles have polar angles 
<PA, 0E and the angle between them is y (Tregear and Mendelson 1975; 
Mendelson and Morales 1977; Yanagida and Oosawa 1978). 

Two empirical functions can be obtained from the measurements: 
P± = (J± - JM±h + J) and P = (,/, - „/,)/(„/„ + ,,/J. The "anisotropy 
index", PJP may be taken as a characteristic of the F-actin filaments flexibility 
(Borovikov and Gusev 1983). 
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Figure 1. Diagrams explaining the calculation of the polarized fluorescence componets (Yanagida 
and Oosawa 1978). A: 0 is the angle between the filament axis of F-actin (OW) and fiber axis (OZ) at 
parallel (||) or penpendicular (1) direction of exciting light. B: Explanation of the calculation of para
meters of polarized fluorescence; <P^.<I>i are angles between the F-actin long axis and the absorption 
(A) and emission (£) dipoles in F-actin respectively, y is the angle between A and E dipoles. 

a. Conformational changes of actin filaments and changes of orientation and random motion oj myosin 
heads in ghost fibre decorated by soluble myosin fragments. 

Ghost fibres have been shown to be very convenient for the study of conforma
tional changes of actin filaments induced by the binding of both the tropomyo
sin-troponin complex and the myosin heads (Yanagida and Oosawa 1978; Boro
vikov et al. 1978, 1982; Borovikov and Karandashov 1983; Borovikov and 
Gusev 1983; Borovikov et al. 1986a, b; Kakol et al. 1987; Szczesna et al. 1987; 
Borovikov et al. 1987, 1988; Gaiqzkiewicz et al. 1987; Nowak et al. 1990). 

The question arises whether the conformational changes of actin filaments 
induced by the binding of skeletal muscle myosin heads are dependent on the 
type of the divalent cation bound to the heads and/or on the phosphorylation 
of regulatory light chains? In other words, whether the interaction of actin with 
myosin in skeletal muscle is influenced by Ca2+ binding to myosin heads and/or 
by phosphorylation of myosin regulatory light chains. 

The studies of changes of polarized fluorescence of intrinsic and extrinsic 
fluorophores bound to actin filaments in ghost fibres, induced by the binding of 
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phosphorylated and dephosphorylated myosin heads in the absence of ATP 
(rigor binding) at low or high Ca2+ concentrations, clearly showed that these 
changes depend on both the type of the divalent cation bound and that of the 
phosphorylated or dephosphorylated form of myosin regulatory light chains. In 
these studies, actin filament flexibility was observed to increase upon binding to 
actin of dephosphorylated heavy meromyosin with bound Ca2+ or phosphory
lated meromyosin with bound Mg2+. The actin filament flexibility could be 
decreased by binding dephosphorylated heavy meromyosin with bound Mg2 + 

or phosphorylated meromyosin with bound Ca2+ (Ka.kol et al. 1987). The effect 
of the binding was enhanced in the presence of tropomyosin-troponin complex 
rebound to the ghost fibres Szcz^sna et al. 1987). 

The polarization of intrinsic F-actin tryptophan fluorescence was depen
dent on Ca2+ concentration when soluble fragments of myosin containing intact 
regulatory light chains were bound to the actin filaments (Borovikov et al. 
1982; Borovikov and Karandashov 1983). The binding of phosphorylated or 
dephosphorylated heavy meromyosin containing regulatory light chains with
out 2 kDa N-terminal fragments induced an increase of the flexibility of actin 
filaments regardless of whether Ca2+ or Mg2+ were present (Szcze,sna 1989). 

Szcz^sna et al. (1989) could show that the conformational changes of actin 
filaments induced by the binding of phosphorylated and dephosphorylated 
myosin heads influenced the structural organization of tropomyosin on the actin 
filaments. Thus, the kind of tropomyosin binding to the actin filament is 
influenced by the modulation of binding of myosin crossbridges with the actin 
filament. 

These observations may be summarized as follows: 
In the absence of ATP myosin heads seem to be able to form at least two 

kinds of complexes with actin filaments, differing in their structural organization 
and in actin filament flexibility. 

Myosin heads consist of three domain-like fragments, designed according 
to the molecular weight of their heavy chains as 50K, 27K and 20K (Mornet et 
al. 1981, 1984). The structural organization of a domain may be determined by 
several factors. The myosin light chains are close to both the 27 and the 20K 
domain (Audemard et al. 1988 and the references therein). 

Depending on the phosphorylation of myosin regulatory light chains and 
on whether Ca2+ or Mg2+ are bound, myosin may exist in two conformational 
states able to form two types of complexes with actin. These states differ in the 
structure of myosin regulatory light chains, very probably involving changes of 
the 20K domain structure and the interdomain organization of myosin heads. 
Thus, the ability to form two different complexes with actin monomer depends 
on the internal organization of the domain-like regions of myosin heads. This 
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Figure 2. Schematic representation of myosin heads-actin complexes formed depending on the 
phosphorylation of myosin heads and on the type of divalent cations bound. State 1 represents the 
case with the heads bound with the actin filament, inducing an increase of actin filament flexibility. 
State 2 leads to a decrease of actin filament flexibility. The sites of fluorophore attachment to actin 
monomers are marked by asterisks. 

ability may be influenced by phosphorylation of regulatory light chains and by 
the type of ion (Mg2+ or Ca2+). 

Dependent on the type of myosin heads binding to actin monomer, the 
intermolecular organization of actin changes and the actin filament flexibility 
increases or decreases. 

Two peptide chain segments (10 kDa and 35 kDa) may be recognized in 
actin monomer. The segments form two-domain-like structures (Holmes et al. 
1989) and the domains may differ in their organization. 

Assuming that the organizations of the two actin monomers are different 
in rigid and flexible actin filaments, the above described findings concerning the 
influence of different forms of myosin heads on the flexibility of actin filaments 
may be summarized as follows: 
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At least two different forms of actin monomer-myosin head complexes exist 
in rigor binding. The difference concerns the kind of the myosin heads binding 
to actin monomer and the structural organization of the myosin heads and the 
domains of actin monomers. 

Fig. 2 is a schematic representation of these complexes. State (1) may 
represent the kind of the binding of myosin heads resulting in an increase, and 
state (2) in a decreasse of the actin filament flexibility. 

Myosin heads with the regulatory light chains lacking the 2kDa N-terminal 
fragments are able to form only one type of complexes, witch result in an 
increase of the actin filament flexibility. 

Polarized fluorescence studies with 1,5 IAEDANS-labeled phosphorylated 
and dephosphorylated heavy meromyosin complexed with F-actin in ghost fibre 
showed differences in polarized fluorescence parameters dependent on the type 
of the bound cation (Mg2f or Ca2 + ) (Borovikov et al. 1987, 1988). 

The changes in orientation and random motion of myosin heads complexed 
with actin filaments were dependent on phosphorylation of the regulatory light 
chains as well as on the kind of the divalent cation bound to the heads. 

The observations described above comply with the assumption that the 
structural alterations of actin filaments induced by the binding of myosin heads 
depend on the kind of the binding limited by the conformation of myosin heads. 

b. Conformational changes of actin filaments decorated by modified soluble myosin fragments in ghost 
fibres. 

When myosin heads are modified by N, N'-phenylenedimaleimide (pPDM) in 
the presence of MgADP, interthiol cross-link forms between the reactive SH, 
and SH2 sulfhydryl groups (Cys 707 — Cys 697) leading to the entrapment of 
MgADP at the active site (Wells and Yount 1979, 1982). The conformation of 
pPDM(SH,—SH2) modified myosin heads simulates an MATP and/or MADP-
Pi state (King and Greene 1986). However, when SH2 and SHX (Cys 697 — Cys 
540) are cross-linked, pPDM (SH2 — SHX) modified myosin simulate an M ADP 
state (Chaussepied et al. 1988). 

The polarized fluorescence studies of the effect of binding of pPDM-modi-
fied heavy meromyosin to phalloidin-rhodamine-labeled F-actin in ghost fibres 
disclosed significant differences between the phosphorylated and dephosphory
lated modified heavy meromyosin, and the native one. 

The values of all parameters of phalloidin-rhodamine fluorescence are 
strongly dependent on whether SH, — SH2 or SH, — SHX were crosslinked in 
the presence of MgADP. 

Fig. 3 shows the changes of the values of the angle between the actin 
filament long axis and the fibre axis expressed as zlsin2®, and of the angle 
between the emission dipoles and the F-actin axis expressed as A@E. 
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Figure 3. Changes of the angle between the actin filament long axis and the fibre axis (expressed 
as sin2 0), and the angle between the actin filament long axis and the emission dipoles (4<Pt) induced 
by the binding of phosphorylated and dephosphorylated pPDM-modified heavy meromyosin to 
phalloidin-rhodamine and 1,5-IADEANS-labeled actin filament in ghost fibres in dependence on 
the type of the divalent cation bound with the myosin heads. The binding of myosin heads was 
performed in a solution containing 30mmol/phosphate buffer (pH 7.0), 1 mmol/1 MgCl2 and 
lmmol/1 EGTA or 0.1 mmol/lCaCl2 (EGTA or Ca2+, respectively); pPDM(SH — SH2) — pho
sphorylated and dephosphorylated heavy meromyosin modified by cross-linking of Cys 707 and Cys 
697 in the presence of MgADP; pPDM(SH2 — SHX) — phosphorylated and dephosphorylated 
heavy meromyosin modified by cross-linking of Cys 697 Cys 540 by pPDM in the presence of 
MgADP. 
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The flexibility of actin filaments induced by the binding of phosphorylated 
heavy meromyosin with SH,—SH2 cross-linking trapped was lower than that of 
actin filaments without bound myosin heads, independent of whether the di
valent binding sites of myosin heads were saturated by Mg2+ or Ca2+. The effect 
of the binding of dephosphorylated pPDM (SH,—SH2) modified myosin on the 
flexibility of actin filaments was strongly diminished as compared to that of 
native dephosphorylated heavy meromyosin. 

However, when MgADP was trapped by cross-linking of SH2—SHX of 
phosphorylated and dephosphorylated heavy meromyosin, a highly significant 
increase of the actin filament flexibility was observed (Fig. 3) with myosin heads 
saturated with Mg2+ or Ca2+ ions. 

The binding of phosphorylated and dephosphorylated pPDM (SH2—SHX) 
modified heavy meromyosin to actin filaments decreases the angle between the 
emission dipole and the fibre axis, independent of the type of the divalent cation 
bound and the form (phosphorylated or dephosphorylated) of the heavy 
meromyosin. 

On the other hand, when actin filaments in ghost fibres were specifically 
labeled with 1,5-IAEDANS, the pPDM modified heavy meromyosin induced an 
increase of the angle between the emission dipole of fluorophores and the 
F-actin axis. This angle was smaller when the bound heavy meromyosin was 
modified by cross-linking of SH,—SH2 than by SH,—SHX groups in the 
presence of MgADP (Fig. 3). 

The conformational changes of F-actin were reflected in changes of po
larized fluorescence parameters of phalloidin-rhodamine bound probably to the 
cleft between the two domains of the actin monomers (Vandekerckhove et al. 
1985; Miki 1987), or in those of 1,5-IAEDANS attached to Cys-375 of F-actin. 

The angles of the emission dipoles of different fluorophores were observed 
to change with respect to the axis of the actin filament (<PE) in opposite direction 
(compare Fig. 3) 

Since the fluorophores are attached to different regions of actin monomer 
the above observation might suggest that some intramolecular conformational 
changes of actin monomer occur (compare Fig. 2). 

Thus it seems reasonable to assume that during ATP hydrolysis the loose 
binding of myosin heads complexed with ATP (MATP) or ADPPi (MADPPi) 
with actin filaments decreases the flexibility of the actin filaments and after the 
release of Pi (complexed with ADP (MADP)) the flexibility of the actin filaments 
increases. The changes of the actin filament flexibility seem to be connected with 
some alteration of the actin monomer organization in the actin filament and/or 
with intermonomer structural changes. 
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Figure 4. Diagrams explaining the changes of polarized fluorescence parameters of phalloidin-
rhodamme and 1,5-IAEDANS attached to actin filaments in ghost fibres accompanying "loose" (.4) 
and „tight" (B) binding of myosin heads to actin monomer. &[

AE, 0\E and 0l
AE, 0\E are the angles 

between the actin filament long axis (a) and the absorption and emission dipoles of phalloidin-
rhodamine and 1,5-IADEDANS respectively 0and ©'are the angles between the fibre axis and the 
actin filament long axis for "loose" or "tight" binding of myosin heads to actin monomer respective
ly. 0<0';0'AE>0'AE;<PAE<0AE. 

General model of conformational changes of actin thin filaments and cross-bridges of myosin thick 
filament, and modulation of skeletal muscle contraction. 

Let us assume that Fig. 4 is a true representation of changes of polarized 
fluorescence parameters of F-actin fluorophores induced by loose (A) and tight 
(B) binding of myosin heads to actin monomers. Dependent on the localization 
of the fluorophore in the actin monomer, various changes of angles between the 
actin filament axis and the absorption and emission dipoles. (A, É) are obtained. 
The diagram illustrates the spatial organization of the absorption and emission 
dipoles (A, E) as cones around the fibre axis, different for phalloidin-rhodamine 
and 1,5-IAEDANS attached to actin monomer. 

In the case of heavy meromyosin bound loosely to actin, the angles between 
the actin filament axis and the absorption and emision dipoles of phalloidin-
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Figure 5. Diagrams explaining the changes of polarized fluorescence parameters of 1,5-IAEDANS 
attached to Cys 707 in myosin heads bound to actin monomers "loosely" (A) and "tightly" (B). The 
spatial organization of absorption and emission dipoles of the fluorophore are represented as cones 
around the axis. B, ff are the angles between the actin filament long axis and the fibre axis; 0AE and 
0At are the angles between the absorption and emission dipoles of the fluorophore and the myosin 
head long axis B> B': 0AE < 0AE. 

rhodamine (Í>ÁE) are lower than for tight binding (<PÁfc). The opposite is true for 
1,5-IAEDANS. 

In both cases the flexibility of the actin filament is higher when myosin 
heads are bound tightly than when they are bound loosely (compare Fig. 3). 

That means, that the various parts of actin (in the case ofphalloidin-rhoda-
mine the cleft between the two domains and in the case of 1,5-IAEDANS 
around the Cys-375) changed differently. 

The spatial organization of absorption and emission dipoles of 1,5-IAED
ANS bound to the SH, group (Cys-707) of myosin heads is shown on diagram 
(Fig. 5) as cones on myosin head long axis. It changed at tight and loose binding 
similarly as in the case of lAEDANS attached to Cys-375 on actin filament 
(Borovikov et al. 1990). The angle 0AE < <Í̂ E, and that between the myosin 
head long axis and the actin filament axis B > /?'. 

Thus, the conformational changes of myosin cross-bridges and actin fila
ments induced by the binding of heavy meromyosin to F-actin in ghost fibres 
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Figure 6. The influence of ionic strenght of "contracting" solution on isomeric tension development 
by glycerinated rabbit skeletal (psoas) muscle fibre. The contracting solution contained: I0mml/l 
stock CaCl2 solution calculated as described by Persechini et al. (1985) was added to obtain a Ca2 + 

concentration of lO/miol'l. The concentration of KCl was I20mmol/I (C,) and 50mmol/l (C„). The 
arrows indicate additions of relaxation solution (R), i. e. solutions C, and Cu without added Ca 2 +. 

may be described as follows. The flexibility of actin filaments decreases when 
myosin cross-bridges are loosely bound to actin filaments, and the random 
motion of the cross-bridges and the amount of randomly oriented fluorophores 
on myosin heads increases. The opposite is true for tight binding. The spatial 
arrangement of several regions of actin monomer and myosin head changed. 

Conformational changes of actin filaments and cross+ridges of thick filaments upon the transition from 
relaxation to contraction and rigor of skeletal muscle fibres. 

The polarization of tryptophan fluorescence in muscle depends on the 
physiological state of the latter (Aronson and Morales 1969; Dos Remedios et 
al. 1972; Borovikov et al. 1971, 1974). Guth (1980) suggested, that the degree 
of the tryptohan fluorescence polarization in muscle is insensitive to the orienta
tion of the cross-bridges. 

With muscle fibres at constant (MgATP), the tension developed in the 
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Table 1 Polarized fluorescence of tryptophan residues of F-actin in glycerinated muscle fibre. 
The degrees of fluorescence polarization PL and P are expressed as ( / — / i ) : ( 1 / 1 + J ) and 
(/i — J^'-i^i + ±1) respectively, where / stands for the intensities of the four components of 
polarized fluorescence. The directions of the polarization planes of the exciting and the emitted light 
relative to the fibre axis are indicated on the left and on the right side, respectively. The fluorescence 
anisotropy index was determined as A = Pl/P 

Tension 
(arbitrary 

units) 

102 
52 

Arifor 

2.55 
2.35 

A a , , 

2.15 
2.15 

Angor'Arclax 

0.4 
0.2 

Ionic 
strength 
(mol/1) 

0.07 
0.14 

presence of Ca2+ depended on the ionic strength (Borovikov and Lebedeva 
1987). As shown in Fig. 6 the tension increased with the decreasing ionic 
strength of the "contracting" solution. Assosiated with this increase in tension, 
there was an increase in the anisotropy index of intrinsic polarized tryptophan 
fluorescence (Table 1). 

The anisotropy of the tryptophan fluorescence of muscle fibres in "relax
ing" solution was independent of the ionic strenght, and the increase of aniso
tropy index was correlated with the increase in tension and the decrease of ionic 
strength of the "contracting" solution (Table 1, Fig. 6). 

The observed changes of anisotropy of tryptophan fluorescence of muscle 
fibres, dependent on physiological state, may be connected with some alteration 
of the actin filament structure induced by the binding of myosin heads. The 
effect of myosin heads binding to the actin filaments manifested as an increase 
in their flexibility has been demonstrated using various methods (Yanagida and 
Oosawa 1978 and the references therein). 

When the polarization plane of the exciting light is directed parallel or 
perpendicular to the fibre axis, and the emission polarization from an extrinsic 
fluorophore specifically bound to actin or the myosin heads is investigated, it 
can be assumed that changes in polarization are caused by movements of the 
ligated protein or of its ligated domain. 

As mentioned above, the four components of polarized fluorescence, tIp 

i/ľ ±AL> J\\ c a n be employed to calculate PL and P„ and the angles between the 
absorption and emission dipoles and the fibre axis. Therefore, the changes in the 
structural organization of the labelled protein may be characterized by the 
values of these parameters of polarized fluorescence. 

When F-actin in glycerinated muscle fibre containing phosphorylated 
myosin was specifically labelled by phalloidin-rhodamine, changes of the para
meters which characterize the structural changes of the actin filament occurred 
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upon the transition from the relaxed state to contraction. Our previous results 
(Wrotek et al., 1989) have shown a significant decrease of the angle between the 
emission dipoles and the actin filament axis in contracted glycerinated muscle 
fibre. Also, the flexibility of actin filaments increased as indicated by the in
creased values of sin- 0. The changes of the parameters of polarized fluorescence 
of phalloidin-rhodamine were correlated to the changes of tension developed 
by glycerinated muscle fibres; the tension development showed dependence on 
both the phosphorylation of myosin heads and the concentration of Ca2+ ions. 

The changes described above are probably influenced by phosphorylation 
of myosin heads and by the exchange of calcium ions for magnesium ions in 
myosin heads. Thus, it seems reasonable to assume that muscle contraction is 
modified by myosin phosphorylation and the exchange of divalent ions, which 
affect the kind of the binding of myosin heads to actin by allowing a proper 
conformation of myosin heads, i.e. a proper organization of their inter-domain 
structure. 

Finally, it can be concluded that: 1. The flexibility of actin filaments is increased 
or decreased depending on the kind of the binding of heavy meromyosin to 
actin. 2. When phosphorylated myosin heads are bound to actin filaments the 
flexibility remained increased at low concentrations of free calcium. 3. The 
conformation of myosin heads allowing to induce a decrease of actin filament 
flexibility by exchanging Ca2+ for Mg2+ ions requires the presence of regulatory 
light chains with intact N-terminal fragments containing phosphorylable serine. 
4. Both, the changes of thin filaments flexibility and the alteration of structural 
organization of myosin heads depend on the type of the divalent cation bound 
with the myosin heads, and on the form (phosphorylated or dephosphorylated) 
of myosin regulatory light chains. 5. Upon the transition of the skeletal muscle 
fiber from rigor to the relaxed state, the flexibility of the thin filaments decreases 
and the structural inter-domain organization of myosin heads changes. 

Thus, it seems reasonable to suggest that the modulation of skeletal muscle 
contraction by phosphorylation and by the exchange of Ca2+ bound with 
myosin heads for Mg2+ is due to changes of the inter-domain organization of 
the myosin heads which influence their ability to from complexes with actin, and 
to increase or decrease actin filament flexibility. 
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