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The "classical" concept concerning the functioning of ion channels considers 
them as being operationally independent from cellular metabolism. This con
cept seemed to be quite universal; however, during recent years it has become 
more and more obvious that it considerably simplifies the reality and that 
channel function can be under direct control of intracellular metabolic process
es; this is especially true for calcium channels. 

The first indications of metabolic modulation of calcium channel function 
have been obtained from cardiac muscle fibers. It is well known that in cardiac 
muscle fibres the calcium-dependent plateau of the action potential is prolonged 
under the action of catecholamines; this prolongation is of major importance 
during sympathetic enhancement of cardiac activity (Reuter 1974; 1979). Based 
on data about the functional role of cyclic nucleotide metabolism in activation 
of protein phosphorylation (e.g. Greengard 1978), it was suggested that the 
catecholamine-induced potentiation of the calcium component of the cardiac 
action potential is mediated by increased synthesis of cyclic AMP by adenylate 
cyclase and by subsequent phosphorylation of the proteins responsible for 
calcium conductance via the cAMP-dependent protein kinase. Suggestions 
concerning a possible role of cAMP in the modulation of the calcium conduc
tance in neuronal membrane were made by Shimachara and Tauc (1977) and 
Klein and Kandel (1978). They recorded in Aplysia the synaptic action exerted 
by a defined neuron (or directly the slow inward current in that neuron) and 
observed potentiation under external application of serotonin (which is a com
mon neurotransmitter in mollusc ganglia). The same effect could be obtained by 
injecting cAMP into the cell or by incubating the ganglion in a solution contain
ing phosphodiesterase inhibitors (phosphodiesterase destroys intracellular 
cAMP). The data reported by these authors stimulated more detailed investiga-
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tions of the possible metabolic modulation of calcium channel function, using 
direct recordings of calcium currents. 

cAMP-dependent modulation of calcium currents in neuronal membrane. The 
high-threshold calcium channels in the neuronal membrane possess an impor
tant characteristic which makes them very convenient for the study of the 
metabolic dependence of their function. During intracellular dialysis the corres
ponding calcium currents rapidly decrease in amplitude: in large mollusc neu
rons this takes several tens of minutes (Kostyuk and Krishtal 1977; Byerly and 
Hagiwara 1982), in smaller mammalian neurons only few minutes (Kostyuk et 
al. 1981). Obviously, a cytoplasmic factor which can easily be washed out from 
the cell or destroyed during its dialysis is necessary for normal functioning of 
calcium channels. Both in mollusc and mammalian neurons the introduction 
into the dialysis solution of cAMP together with ATP and Mg2+ (the cofactor 
necessary for ATP hydrolysis) not only prevented a further decrease of calcium 
currents in many cells, but sometimes restored them to their initial levels. 
Separate introduction of each of these substances had only a weak stabilizing 
effect (Fedulova et al. 1981; Doroshenko et al. 1982). With snail neurons, the 
maximal effect was observed at cAMP concentration of approx. 10"mol/1, 
although partial restoration could be observed even at micromolar concentra
tions. Optimal concentrations of ATP and Mg2+ were 2mmol/l and 3mmol/l, 
respectively. After reaching the maximal effect, the amplitude of the calcium 
current started to decrease again; however, the decrease was less rapid than 
during dialysis with simple saline solution. The introduction of cGMP was not 
associated with any effect on the "wash-out" of calcium currents. 

Obviously, the activity of membrane-bound enzymes is retained in con
ditions of intracellular dialysis or perfusion, and they can be activated by the 
corresponding substrates introduced into the cell. This has been supported by 
a series of other experiments. The addition of fluoride ions into the perfusate in 
concentrations that activate membrane adenylate cyclase (several mmol/1) 
together with ATP and Mg2+ also restored calcium currents. On the contrary, 
the addition of Cu2+ (adenylate cyclase inhibitor) speeded up the "wash-out". 

The described mechanism of the cytoplasmic control of membrane calcium 
conductance is characteristic only for the high-threshold channels. The low-
threshold calcium channels, as already mentioned, are very resistant to altera
tions of the intracellular processes; they can retain their function in isolated 
membrane patches for a long time. The rapid inactivation of low-threshold 
channels is not connected to the action of intracellular calcium ions (Carbone 
and Lux 1984; Fedulova et al. 1985). Intracellular introduction of fluoride or 
cAMP did not modulate the activity of low-threshold channels either (Dupon 
et al. 1986; Carbone and Lux 1984). 
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Still, experimental data do not prove directly the suggestion that an increase 
in intracellular cAMP levels affects the calcium conductance through activation 
of the cAMP-dependent protein kinase (cAMP-PK), which in turn phosphory-
lates some proteins important for the functioning of calcium channels; nonethe
less, this seems highly probable. More direct evidence has been obtained from 
experiments with the catalytic subunit (CS) of the cAMP-PK. The injection into 
Aplysia neurons (through a microelectrode) of the cAMP-PK CS purified from 
bovine myocardium facilitated the generation of "calcium" action potentials 
(Kaczmarek et al. 1980). When introduced into a dialysed neuron, it stopped the 
"wash-out" of high-threshold calcium currents and restored them, sometimes 
up to the initial levels (Doroshenko et al. 1984). The presence of ATP, not 
cAMP, was necessary for the effect. Stable calcium currents of constant am
plitude could be recorded during long lasting (several hours) cell dialysis. 
Removal of ATP from the cell resulted in rapid deterioration of the currents. 

All the above can be considered as supporting the concept suggesting that 
calcium conductance in the neuronal membrane is modulated by the phosphory-
lating activity of cAMP-PK. Natural inactivation of calcium channels may be 
also connected to channel dephosphorylation, as it is slowed down as a result 
of the above interferences (see also Armstrong and Eckert 1985; Eckert et al. 
1986; Chad and Eckert 1986; Armstrong and Kalman 1988). The parallelism of 
intracellular calcium increase and protein phosphorylation depression led to the 
suggestion that the blocking effect of intracellular calcium on calcium channels 
is also mediated through a metabolic link, namely via potentiation of the 
channel-forming protein dephosphorylation. 

One of the points of interaction of Ca2+ and cyclic nucleotides in their 
recurrent action on membrane channels could be the system of cellular pho
sphodiesterases (PDE). The activity of PDE is highly dependent on Ca2+ ions 
which activate it already in micromolar concentrations through the formation 
of complexes with calmodulin (see Rasmussen et al. 1979). An increase in 
intracellular calcium levels will trigger, through this mechanism, a decrease of 
cAMP levels and correspondingly switch calcium channels into inactive state; 
on the contrary, low calcium levels will substantially depress the activity of 
PDE. 

In parallel it has been shown that stimulation of proteolysis and decrease 
in intracellular ATP levels can also participate in calcium current "wash-out" 
(Chad and Eckert 1986; Eckert et al. 1986; Belles et al. 1988). In certain cases 
introduction of cAMP into the dialysed neurons did not prevent the "wash
out", but some positive effects were observed with ATP (Byerly and Yazejian 
1986) or AMP (Kononenko and Shcherbatko 1988). Recently, a special factor 
has been found in the cytoplasm of cardiomyocytes which prevented calcium 
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channels from "wash-out"; the activity of this factor (m.w. 20—30 kD) could 
be abolished by the application of trypsin or by heating (Kameyama et al. 1988). 
It is quite possible that different types of neurons differ in their mechanism and 
degree of cAMP-dependent control of calcium channels. There may be a cor
relation between the presence of this factor and some functional properties of 
the neuron: calcium currents were strongly potentiated by intracellular in
troduction of cAMP into cells in which a similar potentiation could be produced 
by extracellular application of serotonin. Cells which were insensitive to in
troduction of cAMP did not respond to serotonin either. Possibly, in some 
neurons the mechanism of cAMP-dependent phosphorylation serves to mediate 
the natural modulatory action of serotonin on calcium channels, and this 
mechanism is not expressed in cells in which the function of serotonin and the 
corresponding receptors are absent (Kostyuk et al. 1990). 

Adenylate cyclase is a complex system of membrane proteins in which an 
important role is played, in addition to the external receptor and internal 
hydrolytic units, by the intermediate GTP-binding (G) regulatory proteins. Up-
and down-regulation studies of the enzymatic activity and later direct biochemi
cal investigations have revealed that as a matter of fact, the G-proteins represent 
a complex of substances some of which transmit the activating (Gs) and others 
the inhibitory (GJ signal. 

Depression of calcium currents due to changed adenylate cyclase activity 
through G, proteins is well known to occur in cardiomyocytes during the action 
of acetylcholine on M-cholinoreceptors (Hescheler et al. 1986; Fischmeister and 
Hartzell 1986). There are no direct data about possible down-regulation of 
calcium conductance in neuronal membranes through the cAMP-PK system, 
although there are numerous examples of a similar regulation under the action 
of physiologically active substances, operating on other principles (see below). 

Recently, the separation of the subunits from the purified calcium channels 
of the skeletal muscle T-system and their phosphorylation in vitro, has shown 
that cAMP-PK phosphorylates both the a, subunit with m. v. 165 kD and the 
/?-subunit with m.v. 55 kD (Curtis and Catterall 1984; Hosey et al. 1986; 
Imagava et al. 1987, and others). Further experiments are necessary to deter
mine what site in the channel is really phosphorylated in vivo thus being 
important for changing the channel function; very important will be also 
comparison of these data from muscle fiber membrane with those concerning 
high-threshold neuronal calcium channels. 

Direct modulation of calcium channels by GTP-binding proteins. It has been 
shown by many investigators that several neurotransmitters depress calcium 
currents in sensory neurons from the dorsal root ganglia. This effect was first 
described by Dunlap and Fishbach (1978, 1981) and later by Forscher and 
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Oxford (1984) in relation to noradrenaline which affects only high-threshold 
currents (McFadzean and Docherty 1987) with the secretion of substance P 
being depressed in parallel (Dunlap and Fishbach 1981). The calcium currents 
can be depressed also by GABA (Dunlap and Fishbach 1981; Okamoto et al. 
1983; Deisz and Lux 1985) and its agonist baclofen (Scott and Dolphin 1986). 
GTP-binding proteins are involved in the above effects, as a similar depression 
can be produced by intracellular injection of nonhydrolysable GTP analogues 
(GTP-/-S, GMP-PNP) which induce long-lasting activation of the correspon
ding proteins (Dolphin and Scott 1987, 1989). At the same time, the depression 
is not connected to any changes in the intracellular cAMP levels, althougt it 
could be blocked by toxins which affect the adenylate cyclase complex (pertussis 
toxin). Calcium currents were depressed also under the action of adenosine 
which affects the adenylate cyclase system through the A, receptors connected 
to the G,-proteins (Dolphin et al. 1986; Macdonald et al. 1986). 

All these data lead to the conclusion that calcium channel activity may be 
modulated through a short way, namely by direct interaction of the membrane 
G-proteins with the channels. This suggestion has been widely supported and is 
used now to explain the modulatory action of many neurotransmitters (see the 
review by Ewald et al. 1988). Nevertheless, the existence of transmitter receptors 
directly on the voltage-operated calcium channels cannot be excluded (Forscher 
et al. 1986). 

The depressory effect of noradrenaline (and dopamine) was shown also on 
neurons from other structures: mammalian brain (Williams and North 1985), 
snail ganglia (Akopyan et al. 1985; Gerschenfeld et al. 1986), sympathetic 
ganglia (Horn and McAfee 1979, 1980; Marchetti et al. 1986). In the latter case 
the effect is mediated through a- adrenoreceptors and can be antagonized by the 
corresponding blockers (phentolamine). A more detailed analysis has shown 
that it is connected to a 2 " r e c e P t o r s (McAfee et al. 1981); it can be reproduced 
in frog sympathetic neurons (Koketsu and Akasu 1982). The effects are also not 
connected to changes in intracellular cAMP levels, although they are sensitive 
to pertussis toxin and to the action of antibodies specific for the a-subunit of the 
G-protein. Injection of the purified subunit mimicked the inhibitory effect of 
dopamine (Harris-Warrick et al. 1988). A similar mechanism seems to mediate 
the inhibitory M-cholinoreceptive action of acetylcholine on calcium currents in 
sympathetic neurons (Wanke et al. 1987). In certain ("bursting") snail neurons 
the calcium currents could be inhibited also by serotonin (Kononenko and 
Shcherbatko 1985). 

Down-regulation of neuronal calcium channels has been observed recently 
also under the action of endogenous peptides. Met- and Leu-enkephalins as well 
as morphine blocked calcium currents in the neuroblastoma X glioma hybrid 
cellular line (Tsunoo et al. 2986; Hescheler et al. 1987; Shimahara and Icard-
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Liepkalns 1987; McFadzean 1988). The effect could be abolished by pertussis 
toxin and restored by intracellular introduction of the G-protein a-subunit; 
possibly, in this case the channels were also directly affected by G-proteine. In 
snail neurons calcium currents could be depressed by cholecystokinin (Ham
mond et al. 1987) and the endogenous FMRF-peptide (Brezina et al. 1987). In 
mice sensory neurons inhibition could be produced apart from enkephalins also 
by dynorphin (Werz and Macdonald 1984, 1985; Macdonald and Werz 1986); 
the inhibition concerned predominantly the high-threshold currents (Gross and 
Macdonald 1987). However, a potentiating effect of morphine, via //-receptors, 
on calcium curents in cells has also been described (Lorentz et al. 1988). 

Data concerning possible up-regulation of calcium channels by G-proteins 
are unequivocal. Scott and Dolphin (1987) observed potentiation of the agonist 
action of BAY K 8644 on calcium currents in dorsal root ganglion neurons, 
after intracellular introduction of a nonhydrolysable GTP-analogue. Potentia
tion of calcium curents in hippocampal neurons by noradrenaline was observed 
by Gray and Johnston (1987); however, it could be mimicked also by injection 
of cAMP or application of forskolin. Some increase (~ 50%) of calcium 
currents in snail neurons could be induced by application of the parathyroid 
hormone (Kostyuk et al. 1990). This effect remained despite a progressive 
"wash-out" of calcium currents and the corresponding decrease of intracellular 
cAMP levels. It is not known whether this hormone is present in snail ganglia; 
data about effective binding of exogenous hormone, however, indicate the 
existence of receptors to a similar polypeptide which may act as a natural 
agonist of calcium channels. 

The existence of up-regulation of calcium channels through G proteins acting 
in parallel with indirect modulation via cAMP-dependent phosphorylation has 
recently been demonstrated in cardiomyocytes (Shuba et al., 1990). 

Modulation of calcium channels by other protein kinase systems. After the detec
tion of the C-kinase protein phosphorylation pathway attempts were made to 
reveal its possible participation in the modulation of calcium channels. De-
Riemer et al. (1985) have found that PK-C activation by phorbol esters poten
tiates calcium currents in Aplysia neurons. Harris et al (1986) observed also a 
parallel increase in norepinephrine secretion in pheochromocytoma cells. A long 
lasting increase of high-threshold calcium current induced by phorbol ester has 
been observed by Doroshenko and Kostyuk (1987) in snail neurons. In Aplysia 
bag-cells after treatment with PK-C activators additional calcium channels with 
higher unitary conductance have been observed to be involved in the activity 
(Strong et al. 1987). On the other hand, Hammond et al. (1987) have seen an 
opposite effect after direct injections of PK-C into some snail neurons: an 
increase of the inhibitory action of cholecystokinin. An inhibitory effect of 
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phorbol esters and diacylglycerol on the high-threshold calcium channels in 
aortic smooth-muscle fibers was noticed by Galizzi et al. (1987). A depression 
of both low- and high-threshold components of the calcium currents in cloned 
pituitary cells and chick sensory neurons under the action of PK-C activators 
has been described by Marchetti and Brown (1988). Finally, in mice sensory 
neurons a depression of the inactivating high-threshold calcium current was 
observed under the action of both PK-C activators and forskolin or dibutyryl-
cAMP (Gross and Macdonald 1988). 

Despite a plenty of observations about the possible role of PK-C in the 
modulation of calcium channel functioning, the problem of activation of this 
kinase in natural conditions by some external or internal factors is completely 
unclear. One may suggest that this mechanism can be switched on in addition 
to other processes, for instance by the elevation of intracellular calcium levels 
due to the activity of calcium channels or release from intracellular stores. In 
such a case PK-C can act as a supporting mechanism for cellular responses 
induced by other mechanisms (the so called "gain control"; see Rasmussen et 
al. 1985). 

The cGMP-dependent phosphorylation seems to be the most seldom 
mechanism of modulation of calcium channels; it has been described only in 
some snail neurons (Paupardin-Tritsch et al. 1986). 

Fig. 1 summarizes schematically the modern ideas concerning the molecular 
mechanisms of modulation of the voltage-operated calcium channels. 
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