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Abstract. A simple known model of calcium inactivation is described and 
qualitatively analysed. Stability conditions at the level of a stationary state with 
respect to some small perturbations in the concentration of Ca2+ ions are 
analysed from the point of view of the Prigogine non-equilibrium ther­
modynamics. Possible internal fluctuations in Ca2+ ion concentration are dis­
cussed as connected with fluctuations of the potential energy of interaction 
between calcium ions and the binding sites. 
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Calcium is now recognized as an important intracellular messenger and fluctua­
tions in its concentration have been implicated in the regulation of a large 
number of molecular events (Hagiwara and Byerly 1981). The understanding of 
the origin of this regulation mechanism is one of the basic problems in biophysi­
cal chemistry. To recapitulate, Ca channels play a crucial role in coupling 
membrane excitation to cellular responses such as secretion or contraction. 
Unlike Na channels, Ca channels are often modulated by hormones and neuro­
transmitters. It is known that Ca channels are pores capable of transferring 
millions of permeant ions per second; their voltage-dependent properties clearly 
distinguish them from pumps or exchange mechanisms. This unique role of Ca 
ions as activators and regulators of biological processes is related to their 
physico-chemical properties which are optimal for interactions with high mole­
cular weight bioorganic substances (Carafoli and Crompton 1978). 

Recently Poledna (1989) has developed a simple model of a calcium channel 
inactivation and has analysed it qualitatively. Here we repeat briefly the prin­
cipal assumptions of this model which is based on the Brehm and Eckert 
hypothesis (1978) of an inactivation mechanism depending on calcium con­
centration at the inner mouth of the calcium channel. 
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First, surface concentration of calcium, C„ at the inner side of membrane 
depends on the diffusion, flow from the outer side of the membrane inside the 
cell. This transmembrane transport process can be formally described by the 
kinetic equation 

lv, = ^ = k C t ( C 0 - C , ) - C , (1) 
át 

where C, is the number of non-inactivated channels per unit surface of the 
membrane at time t, C0 is the total extracellular surface concentration of Ca2+ 

ions which is related with intermembrane potential by Boltzmann relationship. 
Membrane channels are present at rather low densities in membranes, usually 
no more than 50 or 100 per cell. This implies that, on the average, channels are 
about 3/mi apart and that they can be treated as a dilute two-dimensional 
solution. 

For simplicity it is supposed that the Boltzmann equilibrium relationship 
holds at the condition on non-zero fluxes and at existing non-zero transmem­
brane potential. We introduce the formal specific rate constants k and x that 
control the activity of working channels (C — closed channel), described simply 
as 

C + Ca (outer) z± Ca (inner) (2) 

Since calcium ions are divalent, they rapidly bind to negative charges within 
the cell and only a relatively small amount of them is actually free inside the 
channel. 

Second, a depolarizing voltage step opens the channels in the surface unit 
of a membrane. Calcium can be bond on the channel at the inner side of the 
membrane and block it. The inactivation of the Ca2+ channels by Ca2* can be 
represented as 

C + Ca (inner) ^± C* (3) 

The system is assumed to be in a stationary state, the total surface concentration 
of channels is Clol, C* stands for the surface concentration of inactivated 
channels, k( is the specific rate constant for the forward reaction of Ca2+ binding 
to the channel, and kT is the specific rate constant of the reverse reaction, release 
of Ca2+ from the receptor. (The asterisk denotes inactivated state.) The rate 
equation corresponding to the Ca2+ inactivation kinetics scheme (3) can be 
written as 

w, = ^ = A ' r ( C t o , - a - A - r C , C , (4) 
át 
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assuming Eq. (5) to hold for Ctol 

Ck)1 = C, + C* (5) 

The same symbols are used for the chemicals and the individual channels as 
well as their concentrations (Cto„ C0, C„ C,). 

It should be stressed that the above model is rather a combination of the 
diffusion transport kinetics represented by the quasichemical non-linear Eq. (1) 
and the non-linear kinetics Eq. (4). The presented model of the calcium channel 
kinetics (with the kinetic scheme introduced) represents a dissipative structure 
isomorphic to the Lotka — Voltera type of autocatalytic equations. The kinetic 
scheme of the functioning of the calcium channel, proposed by Poledna will be 
analysed elsewhere. 

From the non-linear thermodynamics it is known that under certain con­
ditions autocatalytic reactions or, more generally, reactions involving non-
-linear steps, tend to destabilize the system. The distance from equilibrium and 
the nonlinearity may both be the sources of order capable of driving the system 
to an ordered configuration. Naturally, the question arises whether the kinetics 
model of Ca channel (Poledna 1989) is stable with respect to some small 
perturbations in the concentration of intracellular Ca2+ ions. The purpose is to 
investigate this situation. We do this by the help of nonlinear thermodynamics 
of Prigogine (Nicolis and Prigogine 1971). 

The principal variable which determines the stability of a thermodynamic 
system is the excess entropy production. In the case of chemical reactions 
occuring in an isothermal-isobaric system, the condition of stability of a none-
quilitrium steady state would be as follows 

— (#S(0) > 0, dT = dP = 0 (6) 
ôt 

i.e., the time derivative of the second differential of entropy (&S(t) which is 
(?S (í) < 0) corresponding to virtual change is greater than zero. It can be shown 
by thermodynamic arguments that 

| - V s ( 0 ) = \dV^Swkô(AJT) = 
Ôt 2 k v') 

= excess entropy production = 8P 
Accordingly in the neighborhood of the steady state the excess entropy produc­
tion per unit volume can be expressed as 

liSwkS(Ak/T)>0 (8) 
k 

Here, Swk and 8(AJT) are the deviations of the rate wk and affinity AJT from 
the reference state. In our case regard now the nonequilibrium steady state as 
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the reference state, 

UJ ViJ -i- A\i). 

(9) 
W'k = Wok + ÔWy 

AJT=AJT+5(AJT) 

where vvok and (Aok/T) respectively refer to the flux and force in this situation. 
If we perturb the steady state by perturbing only one of the forces AJT, the 
inequality is obtained 

SwJ3(AJT)^0 (10) 

which shows that the perturbation wm and the perturbation (AJT) always have 
the same sign. The next step is to apply these ideas to the simple Poledna model 
of inactivation of calcium channel. 

Stability criterion of excess entropy production 

The system is taken to be isothermal and with no convective motion. We 
introduce the chemical affinities (11) and (12) of the process 

A, = RrhJ- C t ( C °~ C|H (11) 
U c, J 

A2= R r i n - p ( C ' ° ' ~ C 'H (12) 
Uf ctc, J 

where R is the gas constant and T the temperature of the system. We consider 
that C1O1, C0, C„ Tare maintained constant in time (and also k, x, k{, kr = const), 
so that only one independent variable, C„ is left. 

The corresponding perturbations in the chemical affinities arid the reaction 
rates can be written as 

SQ 

(13) 

<5H>, = 

8AX = 

5w2 = 

SA2 = 

- (kC, + x) ÔC, 

J 1 1 
" R T \ c -C ' C 

— kfCfSC, 

- RT—ÔQ 

where C01 is the stationary nonequilibrium intracellular concentration of Ca2+ 

ions provided that the conditions allow simultaneous equilibrium of both 
reaction (2) and (3) 
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kCt(C0-CJ = Cm 
(14) 

kT{Ctoi — C t )
 — k{CtCm 

It follows that reasonable value of C,„ is 

C„,= -a/2 + (<r + 4p)>2l2 (15) 

where 

_ (* ~ kCtot)kr _ kktC0CIM (15a) 
fCf/t KV/t 

Applying the stability criterion (8), it follows that the stationary nonequili-
brium state becomes (and stays) asymptotically stable as 

Z8wkS(Ak/T) 

_R~ 

C 

k 

(SCf>0 (16) (*(CteI - C*) + x) C° + Af(C10l - C*) 

reference state for / ^ f„. This condition warantees that the fluctuations cannot 
drive the calcium channel away from the steady state in the linear regime: i.e., 
the entropy production P = dSJdt cannot increase with time so that the state 
of minimum entropy production is indeed stable under the above conditions of 
calcium channel operation. 

Origin of fluctuations 

The analysis outlined above has been based on a deterministic causal description 
provided by the equations of chemical kinetics. However there exist a number 
of instances in calcium channels where such a description may not be adequate. 
The main reason is that the very existence of many degrees of freedom in 
channels automatically implies the appearance of fluctuations in intracellular 
Ca2+ ion concentrations. Our task is now to understand how fluctuations in the 
calcium channels arise. 

The introduced macroscopic description of the calcium channels has been 
based on the concentrations of free or bound binding sites, further on the 
concentrations of free and bound calcium ions and a restricted number of other 
variables, such as temperature and pressure. A given macroscopic state of 
calcium channel is always associated with rapid transitions between different 
Ca2+ ion states. For example, in the model proposed for the action of calcium 
in muscle it has been supposed that calcium is initially rapidly bound by an 
electrostatic mechanism with a binding constant of 103 — 104moF'. 1. followed 
by a relatively slow reaction with an equilibrium constant of 103 — 102, giving 
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an overall binding constant of 106 — 10'mol"' .1 (Ashley and Moisescu 1972). 
As a result, the macroscopic variables are subject of deviations around certain 
,,reference" values correspond to the results obtained experimentally with ma­
croscopic devices. These deviations appear to the observer as random molecular 
events and are precisely the fluctuations in binding sites and calcium concentra­
tions as mentioned by Hagiwara and Byerly (1981). 

R denotes the characteristic linear dimension of the calcium channel (i. e. 
the channel radius) and ŕ denotes the average distance between Ca2 + ions in the 
channel. Then the number of calcium ions in the whole volume of a channel is 
N ~ (R/r)3. Particularly interesting is the case when <AT> = N}} 1. The mag­
nitude of the most probable fluctuations of potential energy V of Ca2 + ions are 
related by 

v=<vyeq + sv, (svy = o (17) 
where 

sv=v-(vycv 

are fluctuations of the potential energy of calcium ions in calcium channel and 
we suppose that (SV} = 0. Note that the validity of the central limit theorem 
automatically imposes an order of magnitude for the variance of the fluctua­
tions relative to the mean value. Indeed in the case of stochastic potential energy 
variable V 

<V> = N(v} (18) 

when N now is related to the size of the Ca channel and <D> is the potential 
energy of an individual Ca ion. According to the central limit theorem the 
variance (SV2} is bound to be of order cŕN, that is, 

(8V2}oc(V} (19) 

Alternatively, the order of magnitude of the most probable fluctuations V are 
related to < Vs) by 

8V oc <K>"2 oc TV"2 (20) 

The relative importance of fluctuations in Ca2 + ion concentrations, therefore, 
diminishes as the size of the Ca channel increases: 

8V 8V \ 
oc oc— >0 (21) (V} N N"2 N-xx, 

As mentioned above calcium ion bind by an electrostatic mechanism to the 
binding sites. However, except in high accumulation of calcium ions inside a 
channel the number of calcium binding sites generally exceeds the average 
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number of bound calcium ions, so that there are many possible configurations 
of the calcium ions, differing little in potential energy, among which fluctuations 
may occur as the result of thermal motion. Similar fluctuations may occur in the 
configurations of other ions bound to the binding sites, when the number of 
binding sites exceeds the average number such ions which are bound. Fluctua­
tions in the number and configuration of the mobile ions impart fluctuating 
charges and fluctuating electric multipole moments to the system, which would 
not exist between static constellations of electric charge. In these conditions 
chaotic translational motion of free calcium ions generate a stochastic electro­
magnetic field, which gives rise to fluctuations of the calcium ions in the channel. 

By physical means at the stationary nonequilibrium state the potential 
energy of interaction between the Ca2+ ion and the binding site (e. g. carboxylic 
group) V is kept constant on the average, leaving inevitable fluctuations around 
this fixed average value < Vs), adequately described by equation (17). Now, it is 
natural to anticipate that under the described conditions the mean square 
deviation of the potential energy V of calcium ions is 

vx(vy + <vy(^) ,(£) «i (22) 

which is the heart of our considerations. From this relation it follows that if the 
distance f between calcium ions increases, e. g., if the concentration of calcium 
in the channel decreases, also fluctuations of V increase. Fluctuations of V, 
although measurable, might be expected to remain small compared to the 
macroscopic value (.V). However as the volume of the calcium channel is 
limited fluctuations of SV in the calcium channel may be accompanied by 
long-range fluctuations. 

Now we briefly make an estimate of the potential energy fluctuations of the 
calcium channel. Information about the total number of functional calcium 
channels in a membrane patch or whole cell comes along with estimates of the 
unitary current. Estimates of channel density range from (5—15) fim2 (or (1/5 
—1/15) nm2 per channel) in cromaffin cells, up to (30—60) fim~2 (or (1/30— 1/ 
60) fjm2 per channel) in snail neurons (Krishtal et al. 1981). From the introduced 
data we can estimate the probable value of the channel radius R 
((Re(2.523 - 1.457). 10"7m for chromaffin cells and Re(1.030 - 0.728). 
10 7 m for snail neurons). If we consider the two Ca2+ -occupied sites rigidly 
separated by r = 1.15nm, then the deviation (V — (V})/(Vy corresponds to 
(3.077 - 7.012). 10-4 for chromaffine cells and (1.179 - 1.983). 10"3 for snail 
neurons. For the chosen value of r = 5.00nm, the deviation (V — (Vy)/(V} 
acquires a value of (2.789 — 6.359). 10'3 for chromaffine cells and 
(1.069 — 1.7980). 10~2 for snail neurons. From the presented data it can be 



10 Valko and Zachar 

deduced that the effect of fluctuations in charge configurations can influence 
ionic transport processes and the functioning of calcium channels (K ostyuk and 
Mironov 1982). 

Let us return to the properties of the calcium channels. The passage of ionized 
calcium into the cell through selective, voltage gated, channels in the surface 
membrane is an important and widespread phenomenon in excitable tissues. 
The entry of the calcium is significant because this ion can act as an intracellular 
,,messenger" or regulatory agent controlling a variety of cell functions that 
include exocytoses, motility, enzyme activity, membrane conductance, etc. The 
different cell functions are dependent of the stability of the stationary nonequili-
brium state under which calcium channels work. The aim of this contribution 
was to point to the coherence of the ionic transport processes and functioning 
of calcium channels under the stability conditions. 
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