Short communication

Paradoxical Effects of La³⁺ on the Na⁺-loaded Ureter and Taenia Coli Smooth Muscles of the Guinea Pig

TH. V. BURDYGA¹ and I. S. MAGURA²

1 Department of General Physiology, Institute of Physiology, Kiev State Shevchenko University, Kiev 17, 252017, USSR

2 Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev 24, 252601 GSP, USSR

 La^{3+} is known to antagonize Ca^{2+} movement across the cell membrane (van Breemen et al. 1973; Langer and Frank 1972; Sarkadi et al. 1977).

However, recently Mead and Clusin (1985) reported on the paradoxical effect of La^{3+} on chick embryonic cardiac cells. They found that La^{3+} potentiated low-Na⁺ contracture and accentuated local contractions seen in Na⁺-free solution which are thought to reflect Ca²⁺-induced Ca release in heart muscle (Eisner et al. 1985).

In the present study we also present some evidence on the paradoxical effects of La^{3+} on the Na⁺-loaded ureter and taenia coli smooth muscles.

Tension alone was recorded with the continuous superfusion technique described in detail by Brading and Sneddon (1980).

A modified Krebs solution of the following composition was used (mmol/l): Na⁺, 120.3; K⁺, 5.9; Tris⁺, 16.6; Ca²⁺, 2.5; Mg²⁺, 1.2; Cl⁻, 150.2; glucose, 11.5; equilibrated with 100% O₂, pH 7.4. Na-free solutions were made by replacing Na⁺ isoosmotically with K⁺ or Tris⁺. Na-loading of the tissue was done by exposing the muscle to ouabain (10^{-4} mol/l) for 60 min.

Electrophysiological experiments showed that La^{3+} (0.2—1 mmol/l) blocked the evoked action potential preferentially blocking the spike component and phasic contraction as well as the high-K⁺ contracture of ureter muscle. Also, only in high concentrations (5—10 mmol/l) La^{3+} , when applied before Na₀⁺-withdrawal suppressed Na⁺free contracture of Na⁺-loaded ureter muscle. All these findings reflect the Ca²⁺ antagonistic action of La³⁺ which could be best explained if La³⁺ replaced Ca²⁺ on superficial binding sites as was found previously (van Breemen et al. 1973).

On the other hand, we found that application of La^{3+} even in high concentrations (5–10 mmol/l) during development of the tonic component of the

Na⁻-free contracture of the Na⁺-loaded ureter muscle caused further elevation of muscle tone irrespective of the Na⁺ substitute used (Fig. 1, IAb, Bb). This was typical only for the Na⁺-loaded tissue, since application of La³⁺ during the development of tonic component of high-K⁺ (126 mmol/l K⁺) contracture of normal tissue produced relaxation (Fig. 1, ICb). However, in all cases La³⁺ (5 mmol l) strongly potentiated caffeine (20 mmol/l) contractures (Fig. 1). It was found that both Na⁺-loaded and normal tissue in the presence of La³⁺ in Na⁺-containing solution, were able to develop caffeine contractures which in fact were smaller in amplitude than the ones seen in Na⁺-free solution (Fig. 1).

Fig. 1. Effects of La^{3+} (5 mmol l) on the Na⁺-free and caffeine (20 mmol l) contractures of the Na⁺-loaded ureter muscle. (Ia) Control contractures of Na⁺-loaded ureter muscle induced by Na⁺-free solution and caffeine with Tris⁺ (A) and K⁺ (B) used as Na⁺ substitutes, and 126 mmol 1 K^{-} (C) induced contracture of normal tissue. (Ib) Changes in muscle tone and caffeine responses obtained after addition of La³⁺ (5 mmol l) in the course of development of the Na⁺-free (A, B) and high-K⁺ (C) contracture. (IIA) Relaxation of tonic component of the Na⁺-free (Tris⁺ substitution) contracture induced by Ca²⁺-free (3 mmol 1 EGTA) solution. (II, B) Persistence of tonic tension and appearance of small fluctuations of tension in Na⁺. Ca²⁺-free solution caused by addition of La³⁺ (5 mmol 1). (III. A) Relaxation of tonic component of the Na⁺-free contracture and caffeine response obtained in Na⁺. Ca²⁺-free solution with 3 mmol 1 EGTA added. (III. B) Potentiation and persistence of caffeine contractures caused by addition of La³⁺ (5 mmol 1) to Na⁺. Ca²⁺-free solution. Caffeine application for 20 s is marked by filled circles.

It was found that La^{3-} (5 mmol/l) prevented relaxation of the tonic component of the Na⁻-free contracture normally seen upon withdrawal of Ca²⁻ from the bathing fluid (Fig. 1, II*A*). Fig. 1, II*B* shows that the muscle did not relax and

314

small fluctuations of the tonic tension were normally seen in Na⁺, Ca²⁺-free solution with 5 mmol/l La³⁺. Also, it was found that under these conditions ureter muscle was able to generate full sized transient contractures to repetitive applications of caffeine (20 mmol/l) (Fig. 1, III*B*).

Fig. 2. Effects of La³⁺ (5 mmol/l) on caffeine (20 mmol/l) and carbachol (10^{-4} mol/l) responses of the Na⁺-loaded taenia coli. Contractures induced by caffeine (*A*) and carbachol (*B*) applied to Na⁺. Ca²⁺-free solution in the absence (*Aa*, *Ba*) and presence (*Ab*, *Bb*) of 5 mmol/l La³⁺ added to Na⁺. Ca²⁺-free solution. Records from individual tissues. Note small rise in tonic tension caused by Na⁺-free solution. Caffeine and carbachol were applied for 20 s (filled circles).

La ³⁺ (5 mmol/l) also potentiated both carbachol and caffeine contractures of Na⁺-loaded taenia coli (Fig. 2*Ab*, *Bb*). Again, caffeine could cause repetitive contractions of the Na⁺-loaded taenia placed in Na⁺, Ca²⁺-free solution with 5 mmol/l La³⁺ (Fig. 2, *Ab*). Contrary to caffeine, carbachol could cause only a single full sized contracture under these conditions (Fig. 2, *Bb*). The paradoxical effects of La³⁺ seen in our experiments could best be explained if we suggest that La³⁺ blocks a Na⁺ independent Ca²⁺ extrusion system which is likely to be an ATP-driven Ca²⁺ pump similar to that found in red blood cell which in fact was exquisitely inhibited by externally applied La³⁺ (Sarkadi et al. 1977).

References

Brading A. F., Sneddon P. (1980): Evidence for multiple sources of Ca for activation of the contractile machinery of the guine-pig taenia coli on stimulation with carbachol. Brit. J. Pharmacol. 70, 229-240

Eisner D. A., Allen D. G., Orchard C. H. (1985): Regulation of resting calcium concentration in

cardiac muscle. In: Control and Manipulation of Calcium Movement. (Ed. J. R. Parratt), pp. 65-86. Raven Press, New York

- Langer G. A., Frank J. S. (1972): Lanthanum in heart cell culture. Effect on calcium exchange correlated with its location. J. Cell. Biol. 54, 441–455
- Mead R. H., Clusin W. T. (1985): Paradoxical electromechanical effect of lanthanum ions in cardiac muscle cells. Biophys. J. 48, 695 700
- Sarkadi B., Szasz I., Gerloczy A., Gardos G. (1977): Transport parameters and stochiometry of active calcium ion extrusion in intact human red cells. Biochim. Biophys. Acta 464, 93–107
- Van Breemen C., Farinas B. R., Casteels R., Gerba P., Wuytack F., Deth R. (1973): Factors controlling cytoplasmic Ca²⁺ concentration. Phil. Trans. Roy. Soc. London, B 265, 57–71

Final version accepted November 20, 1987