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Abstract. Voltage clamp responses of a single excitable fiber were simulated 
using a core conductor model including a high external resistance (Rs) in series 
to the fiber membrane to allow for intercellular clefts in a multifiber preparation. 
In terms of specific resistance, Rs was between 68 and 264i2tm2. Internal 
resistivity (J?j) was taken to be zero or 200/3cm. The aim of the study was to 
quantify the expected antagonistic effects of external and internal resistances on 
Na current measurements. With Ri = 0, the external resistance was found to 
cause a strong depression of fast inward current compared to an ideal space 
clamp at command potentials between — 30 and 30 raV. With R, = 200 Í2cm, the 
depression of inward current was partially removed. The effects of Rs and R, on 
membrane current measurement were illustrated by cable analysis assuming a 
quasi-steady state of the fiber at peak time of inward current. 
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Introduction 

In multicellular preparations, a quantitative analysis of transmembrane ionic 
currents by the voltage clamp method is limited by axial and radial voltage 
gradients due to intracellular and extracellular resistances. The distorting effect 
of an internal (longitudinal) resistance on membrane current measurement has 
been studied in a previous paper (Solchenbach et al. 1986) using the model of 
a single, thin fiber in a double sucrose gap arrangement where the external re
sistance was set to zero level. In the present paper a single fiber from the interior 
of a bundle is considered, connected to the bundle surface through narrow 
intercellular clefts. The restricted extracellular pathway is represented by a 
lumped resistor in series to the cell membrane of the test compartment. Again, 
emphasis is put on the distortion of fast initial inward current. 
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Model and Methods 

The double sucrose gap arrangement employed in the present simulations has been described in a 
previous paper (Solchenbach et al. 1986; Fig. 2 and eqs. (1 — 7)). The preparation is a cylindrical 
fiber of a radius a = 3 x 10 4cm; the test node length is d = 0.02 cm, the sucrose gap length 
b = 0.14 cm. The fiber membrane is characterized by a capacity of 2/iF/cm2, a time and voltage 
independent potassium conductance, gK = 0.5mS/cm2, and a sodium conductance, gNa, of the 
Hodgkin and Huxley (H-H; 1952) type, with a maximum conductance, gNd, of 10, 50, or 120mS/ 
cm:. The internal resistivity of the fiber is taken to be zero or 200i3cm. The sucrose gap leakage 
resistance Rsh is 20 x Rlx with R, = 200i3Cm and has the same absolute value with R, = 0. The 
external series resistance is chosen to match the cleft resistance of a fiber bundle of about 60/m\ 
diameter (cf. Haas and Brommundt 1980). As was shown in the latter paper (where the bundle was 
treated as a radial continuum) the external resistance is dependent on both the cleft width and the 
resistivity of the external medium as well as on membrane conductance. With increasing conduc
tance, the radial current flow becomes more and more restricted to the outer layers of the bundle 
so that the effective external resistance will decrease. With gNa = 10mS/cnr the resistance in series 
to the fully activated membrane was about 300i2cnr while it was only ~60i3cnr with 
gNi = 120 mS/cnr. In the present study the lumped resistor /?s is assumed to be 7, 3, or 1.8 MO for 
gNa = 10, 50, or 120mS/cm\ With a nodal membrane area A = 2nad = 3.77 x 10~5cm\ the respec
tive values of specific external resistance are 264, 113, or 68i2cnr. Since a series resistance of 
an order as above greatly increases the stability of the feedback system, the specification of the gain 
factor of the control amplifier is not critical and there is no need to introduce a phase lead as was 
done in the simulations with Rs = 0. G is thus taken to be 1000, with r = 1 ms, while r, = r, = 0. 
With these values an adequate feedback control of the voltage monitored across the right sucrose 
gap is obtained. The voltage under control is the sum of the voltage drop across Rs plus the 
transmembrane potential at the right end multiplied by the isolation factor of the gap: 
£ = / K b + Vá(\ -a). 

The methods used for numerical integration of the differential equations were described 
previously (Solchenbach et al. 1986). 

Results 

Fig. 1 illustrates the effect of an external series resistance, R„ on membrane 
current, voltage, and conductance changes associated with a depolarizing step 
command. Simulations with gNa = 10mS/cm2 and Rs = 7 Mi? were performed 
setting the internal resistivity, Rv to zero level (left column) or to 200f3cva 
(middle column) and are compared with results obtained with Rs = 0; 
Rl = 200 Í3cm (right column) and the ideal clamp response of a free membrane 
patch. With R, = 0, membrane current and voltage at any time are independent 
of the position along the test node. The typical effect of a series resistance (left 
column) is to shift the membrane potential from the command level in the 
depolarizing (hyperpolarizing) direction during transmembrane inward (out
ward) current flow (cf. Kootsey and Johnson 1972; Ramon et al. 1975). This 
effect is clearly seen in Fig. 1 A and C. In the beginning of a step clamp the series 
resistance causes a marked delay in membrane potential change (C). While the 
output voltage of the control amplifier jumps to a steady level within a few 
microseconds (not shown), the membrane potential rises in an almost exponen-
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tial manner with a time constant which approximately equals the product of 
membrane capacitance and series resistance, i.e. ~ 0.5 ms in this case. The slow 
development of membrane depolarization is reflected by a delay in the Na 
activation process. Time to the peak of Na conductance, or Na current, is about 
1.4ms against 0.8 ms in the ideal H-H kinetics (B and D). After activation of 
the Na system, the membrane potential overshoots the command level 
( — 20 mV) by about 10 mV. This means a reduction of the driving force, 
(Vm — isNa), for inward current by 16 % compared to an ideal clamp and a 
similar reduction of the current itself, the peak values being 94 and 115/iA/cm2, 
respectively. Since the membrane current has an appreciable component of 
capacitive current, the peak of Na current precedes the peak of membrane 
current by about 0.5 ms. The magnitude of peak Na conductance (D) is slightly 
decreased by the series resistance. In terms of the m, h kinetics, the positive effect 
of the voltage overshoot on the activation variable m is overbalanced by the 
negative effect of the time delay on the inactivation variable h. The apparent 
speed of inactivation, as assessed from the decay of the Na current wave, is 
almost the same in the model and in the control (B). 

When the series resistance is combined with internal resistivity (middle 
column), the voltage deviations due to Rs are modified by cable complications. 
Membrane potential, current, and conductance changes spread from the I-end 
to the V-end and vary in shape and size. The typical overshoot of membrane 
potential after activation of the Na system is clearly seen at all positions along 
the test node (Fig. 1 G). The overshoot is largest (~ 15mV) at the right end of 
the fiber. Since the voltage monitored across the right sucrose gap follows the 
command pulse closely, the overshoot of Vd is nearly equal and opposite to the 
voltage drop across the series resistance, IRS. The depolarizing overshoot at the 
left end observed under the combined influence of Rs plus R, (G) contrasts with 
a marked hyperpolarization seen in the presence of/?, alone (K). Both Fig. 1 G 
and K show a distinct longitudinal voltage gradient, due to axial current flow, 
after activation of the Na system. The voltage gradient, (Vd — V0), reaches 
~ 14 mV at t = 1.8 ms in (G) and ~28mV at t = 1 ms in (AT). The smaller 
gradient in (G) is explained by a general reduction of clamp current by the series 
resistance as can be seen from a comparison of (E) to (/). (Concerning the 
voltage tracings in (K), it should be noted that the records were obtained with 
a low gain of the control amplifier. The positive voltage deflection at the V-end 
is the expression of an imperfect voltage control during inward current flow. The 
strong depolarization at the I-end is a part of a damped oscillation that occurs 
in the beginning of a clamp before Na activation sets in. Details are discussed 
in connection with Fig. 3 and 4 of a preceding paper (Solchenbach et al. 1986)). 
A comparison of Fig. 1 D (full trace) and H shows that the peak value of Na 
conductance is slightly increased by the cable properties. This is explained by a 
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Fig. 1. Voltage clamp responses of an active, isolated fiber (gNa = 10; gk = 0.5 mS/cm2) at various 
configurations of external (Rs) and internal resistance (Rt) as given at the top of each column. Clamp 
step from resting potential ( — 72 mV) to — 20mV applied at zero time. First row: clamp current / 
(expressed as current per cm2 of membrane in the test node, /m); second row: transient Na current; 
third row: transmembrane potential; fourth row: membrane Na conductance as functions of time. 
All records in a row refer to the same calibration. The curves shown in the right column are replotted 
from Fig. 4 of a preceding paper (Solchenbach et al. 1986). In calculations with Rt = 200i3cm, 
different positions (in millimeters) along the fiber are labelled by x = 0 (left end), x = 0.1 (middle), 
and x = 0.2 (right end of the test node). Sodium current and conductance as expected under ideal 
clamp conditions (Rl = Rs = 0) are shown by the dotted curves in (5) and (D). The dashed curves 
in (F) and (J) represent the mean Na current density of the test node. The interrupted horizontal 
lines in (Q, (G), and (AT) indicate the command potential. 
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in (G) as compared to (C). The observation that the voltage overshoot increases, 
or the driving force (Vm — £Na) decreases with increasing distance from the I-end 
(G) is reflected by a decrease of peak /Na along the test node (F). The normalized 
sum of the Na currents from all segments (dashed curve in Fig. 1 F) is essentially 
the same as the current curve in (B) (full line) and thus smaller than the control 
(dotted curve in (B)). This is in contrast to the results shown in Fig. 1 / where, 
in the presence of internal resistivity alone, normalized /Na exceeds the control 
current. Similar effects of Rs and Rt on current size are seen when inward 
component of clamp current rather than the pure Na current is considered: peak 
inward current is distinctly smaller than the control (88//A/cm2 referred to zero 
line) in (A); it is slightly increased but still below the control in (E) and far above 
the control in (7). 

Voltage clamp simulations as shown in Fig. 1 were perfomed at clamp 
potentials between —50 and 50 mV. In Fig. 2 A the clamp current records 
obtained in the presence of both external and internal resistance are shown. In 
all records a smooth downward deflection is seen resembling an Na inward 
current wave. At first sight, the configuration of the current curves looks similar 
to what one would expect from an adequate voltage control. A detailed inspec
tion, however, reveals typical aberrations from ideal space clamping. Fig. IB 
shows the peak inward current-voltage relation taken from Fig. 2 A together 
with the corresponding relation obtained for Rs alone and a plot of peak /Na 

under ideal clamp conditions. With Rt = 0, a strong depressing effect of series 
resistance on peak inward current, /p, is seen at any clamp potential below 
40 mV. Over the ascending limb of the c-v relation, the reduction is about 50 % 
as compared to the controls. This is the same order of reduction as observed in 
the continuous model of a fiber bundle (Haas and Brommundt 1980, Fig. 9 B). 
A further typical effect of series resistance is to shift the maximum Ip in the 
hyperpolarizing direction compared to the ideal c-v relation (cf. Kootsey and 
Johnson 1972). When the external resistance is combined with internal resisti
vity, peak inward current increases at any potential between — 40 and 40 mV but 
it still is distinctly smaller than the control one. An increase by about 20 % in 
7p by R{ in the presence of a series resistance is less than expected since internal 
resistivity alone, in the absence of a series resistance, causes a marked increase 
in /p against the control at all potentials tested (e.g. 185 vs. 122//A/cm2 at 
Ec= — 10 mV). Thus the alteration of/p due to a combination of external and 
internal resistance is not a simple superposition of the respective separate effects. 
In both c-v relations with Rs = 7 MÍ2, the apparent reversal potential of Ip is 
somewhat above the Na equilibrium potential, ENi = 43 mV. The main reason 
for this error is that, in the presence of a series resistance, depolarization of the 
fiber membrane develops with a distinct delay after the onset of a clamp (cf. 
Fig. 1 C and G). Since time to peak Na conductance decreases with increasing 
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clamp steps, peak inward current at Ec = 43 mV is to be measured at a time 
when the driving force, (Vm - £Na), is negative. 

Fig. 3 shows a set of records analogous to those shown in Fig. 1, the only 
modifications being a 5-fold increase of Na conductance (gNa = 50mS/cm2) and 

(mA/cm) 

B 

(mA/cm 

Fig. 2. (A) Family of clamp currents associated 
with various depolarizations (10 mV steps); 
simulation of a fiber with external and in
ternal resistance; Rs = 1 MÍ2; Rt = 200Qcm; 
gNa = 10mS/cnr. Abscissa: time after onset of 
clamp; ordinate: clamp current divided by 
membrane area of test node. Numbers at the 
curves indicate the clamp potential (in milli
volts). (B) Current-voltage diagrams for peak 
early inward current, /p, of a fiber with series 
resistance in the presence (o) or absence (•) of 
internal resistivity and for peak /Na of a free 
patch of membrane (A). /p data refer to the 
respective steady outward currents. The case of 
a fiber with Rs = 0 and R, = 200 Í2cm was omit
ted; in this case, peak inward currents were 
larger than the control values (cf. Fig. 5 B of a 
preceding paper (Solchenbach et al. 1986)). 

a lowered series resistance (i?s = 3 rather that 7 MÍ2). With the series resistance 
alone (left column) a pronounced voltage overshoot of ~ 34 mV relative to the 
command level is observed during the phase of transient inward current; it is 
followed by a very small hyperpolarization during outward current flow 
(Fig. 3 C). Actually, the voltage overshoot means an abortive action potential 
(cf. Kootsey and Johnson 1972, Fig. 2). Time course of Na conductance increase 
is slighty delayed, and peak Na conductance is elevated as compared to the 
control (12 vs. 9.2mS/cm2, Fig. 3D). The excess in Na conductance, however, 
is overbalanced by a decrease in driving force, (Vm — ZľNa), so that peak Na 
inward current is distinctly smaller than the control one (B). These effects are in 
principle the same as, but more accentuated than, those seen in Fig. 1 A—D. 
With R, = 200 Í3cm (Fig. 3 E—L) the higher level of Na conductance results in 
a stronger manifestation of cable complications, i.e. membrane current and 
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voltage inhomogeneities along the test node. Clearly, the voltage, current, and 
conductance tracings in the middle column of Fig. 3 look much like those in the 
right column. (This is different from Fig. 1 where the middle column resembles 
the left rather than the right one.) Most of the features seen with R, alone are 
also encountered, in an attenuated and smoothed fashion, in the presence of R, 
plus Rs, e.g. the damped voltage oscillations associated with the onset of the 
clamp (G, K) or the occurrence of two transients in the Na conductance change 
(//, L) and in the Na current (F, J) at the I-end of the test node. A second inward 
current wave is also seen in the clamp current record (/) but is barely discernible 
in(£). 

RS = 3 win 
R; = 0 

R5 = 3MÍ2 
R, = 200/3cm R, 

0 
200 í&m 
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Fig. 3. Voltage clamp responses of a fiber calculated for a membrane Na conductance gNa = 
50 mS/cm2. Same arrangement of the records as in Fig. 1. The curves in (/—L) were taken from 
Fig. 7 of a preceding paper (for details, see Solchenbach et al. 1986). A portion of the downward 
voltage deflection related to x = 0 in (K) is off scale. 
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Fig. 4 A shows the clamp current records obtained with step commands to 
potentials between - 50 and 50 mV in the presence of 7?, plus 7?,. Again, the early 
inward currents resemble the conventional pattern. A small, second inward 
current wave is observed with depolarizations up to - 30 mV. Fig. 4 B illustrates 
the influence of external and internal resistance on peak early inward current-
voltage relation. The alterations due to Rs are similar to, but more pronounced 
than, those seen in Fig. 2 B. As compared to the control curve, 7p is reduced to 
about 40 % at strong depolarizations and maximum 7p is strongly shifted in the 
hyperpolarizing direction. Because of this shift there is a small range of poten
tials at which 7p is larger than the respective controls. When 7?s is in conjunction 
with 7?i, 7p increases as compared to currents observed with 7?s alone, but it still 
is distinctly smaller than in the controls at potentials between - 3 0 and 40 mV. 

A 10 

7ms 

50 mV 

Fig. 4. (A) Family of clamp currents, or mem
brane currents, based on simulations with 
/?S = 3MÍ2| Ä, = 200í3cm; gNa = 50mS/cm2. 
(B) Current-voltage diagrams for early inward 
current; same arrangement as in Fig. IB. 

In Fig. 5 records obtained with gNa = 120mS/cm2 and R% = 1.8M/Í are 
shown. The errors introduced by the series resistance (A—73) are readily under
stood. Voltage overshoot during inward current flow is ~42mV (C) and peak 
inward current is reduced to about half the control value (B). Cable complica
tions are manifest in an extreme manner (E—Ľ). As expected, axial resistivity 
causes a very strong hyperpolarization at the left end of the fiber (x = 0) during 
the flow of a large inward current. The right end (x = d) undergoes a depolariza
tion which approaches the Na equilibrium potential, £Na; the time course of Vd 

during the first three milliseconds is essentially an uncontrolled action potential 
(G and K). (It should be noted that a loss of membrane voltage control is of 
different origin in the two cases: In the presence of a series resistance (G) the 
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monitored potential E is well controlled but the transmembrane potential Vd 

strongly deviates from E because of a voltage drop across 7?s whereas in the 
absence of Rs (K) the feedback control itself is imperfect.) In a formal sense, a 
given time course of Vd may be considered as a specification of the boundary 
values for the cable equation which describes the electrical behavior of the fiber 
in the test node. The boundary values of membrane potential, together with the 
inherent boundary condition 9 VJdx = — Vd q/b, determine the response of the 
fiber in the segments away from the V-end (cf. eqs. (1) and (2) of the preceding 
paper (Solchenbach et al. 1986)). This explains the observation that the tracings 
shown in (E—77) are almost identical to the respective curves in (7—Ľ). 

/?b=1.8Mí2 Ä S=1.8MÍ3 Rs = 0 
7J, = 0 R, = 200Qcm R, = 200ncm 

Fig. 5. Voltage clamp simulations for a fiber with gNa = 120mS/cm2. Same arrangement of the 
curves as in Fig. 1. The records in (/—Ľ) were re-plotted from Fig. 8 of a preceding paper 
(Solchenbach et al. 1986). 
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Discussion 

In the present study a single fiber with an appropriate external resistance in 
series to the fiber membrane was used as a model for voltage-clamped multifiber 
trabeculae. The unavoidable imperfections of voltage clamping due to cable 
properties and series resistance are best recognized by considering a preparation 
with passive properties only, e.g. a fiber subjected to small de- or hyperpolariza-
tions form the resting level which do not significantly alter the state of the 
membrane. In this case, the current response of the fiber can be followed by 
analytical methods. For simplicity, we assume a perfect external insulation in the 
two sucrose regions of the voltage clamp circuit shown in Fig. 2 of the preceding 
paper (Solchenbach et al. 1986), i.e. we consider the fiber in the test node as a 
finite cable with sealed ends with current injected at one end, x = 0. The steady 
values of clamp current 7 and monitored potential E are then related by 

7?s + r,A/sinh(i//A) 

where Em is the reversal potential of the membrane, r, the internal resistance per 
unit length, X = \JrJr, the length constant of the fiber, and d the length of the 
test node. Eq. (1) is directly derived from the cable equation and appropriate 
boundary conditions. The denominator of the right-hand side of eq. (1) may be 
understood as the effective resistance of the preparation. It is the sum of the 
external resistance, 7?s, plus the term r,A/sinh(i///l); the latter depends on cable 
properties only and may be considered as the intrinsic resistance of the fiber, 7?jnl. 
Obviously the intrinsic resistance decreases with increasing values of r, or 
decreasing values of rm. For sufficiently low values of r„ 7?int approaches the 
membrane resistance of the test node, Rm = rjd, so that 

I=(E-Env)/(Rs + RJ. (la) 

This is the well-known c-v relation for an isopotential membrane patch with a 
resistance in series to the membrane (cf. Kootsey and Johnson 1972). With 
increasing values of r„ R,M becomes smaller than the membrane resistance. The 
decrease of RiM is equivalent to the development of an axial voltage gradient 
which increases the driving force for membrane current in the fiber segments 
distant from the V-end. For large values of r„ i.e. small values of A, 7?,nt -* 0 and 

7 ^ ( £ - £ r e v ) / 7 ? s . (lb) 

(Note that the dependence of the intrinsic resistance on r, is just opposite to the 
behavior of the input resistance as defined by conventional cable theory. The 
difference is due to the fact that 7?,nt refers to the potential at the far end of the 

file:///JrJr
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preparation, x = d, while the input resistance is related to the potential at the 
point of current injection, x = 0.) 

A similar interpretation may be given for the active state of the membrane. 
A closer inspection of Fig. 1, 3, and 5 E—L shows that the delay time for 
propagation of Na conductance increase along the test node is short relative to 
the duration of the activated state itself, and the size of activation does not 
drastically differ in different fiber segments. This is true for the greater part of 
the test node with the exception of the very I-end. In spite of a distinct voltage 
gradient along the fiber, the nodal membrane has a nearly uniform conductance, 
gp, at a time when the inward component of clamp current, or total membrane 
current, reaches its peak. (At first sight, an appreciable amount of Na conduc
tance at x = 0 would seem to conflict with the hyperpolarization that develops 
during a strong inward current flow. It should be noted, however, that a 
hyperpolarization at the I-end is preceded by an excess depolarization which 
gives rise to a strong activation of the Na system, and that the deactivation of 
Na conductance due to hyperpolarization is not complete at peak time of total 
inward current, cf. Fig. 3 E and 77.) For simplicity, we neglect a capacitive 
component of clamp current which seems justified with higher values of Na 
conductance (Fig. 3 and 5). With these assumptions, current and voltage distri
bution along the fiber at peak time will be similar to the steady response of a 
finite cable with constant membrane conductance, gp, and eq. (1) is expected to 
hold again, with appropriate values of Em and X. To check the validity of this 
concept, let us consider the records shown in Fig. 3 7—L (gNa = 50mS/cm~2; 
Rs = 0; Ec = — 20 m V). From the time courses of Na conductance related to the 
midpoint and the right end of the test node (L) peak Na conductance may be 
assigned a mean value of ~ 13mS/cm2 which, together with gK = 0.5, gives 
gp ~ 13.5mS/cm2 and Em^39m\. With a = 3 x 10"4cm; r, = 708Mi2/cm 
length constant Xp = ~J\l{2narlgp) reaches ~ 0.0075 cm. The membrane poten
tial at the V-end is poorly controlled and £ is ~ 23 mV at peak time (AT). With 
the above data and d = 0.02 cm, eq. (1) yields a theoretical value of 7p ~ 22 n A 
which is close to the actual value (peak inward current density shown in Fig. 3 7, 
0.59 mA/cm2, multiplied by the area of nodal membrane, 3.77 x 10"5cm2). An 
approximate coincidence between theoretical and actual values of peak inward 
current is also obtained when the records of Fig. 3 E—77 (Rs = 3 MÍ2) are 
analyzed. Thus the current-voltage relation predicted by eq. (1) would seem to 
hold for an active fiber with a reasonable accuracy. 

In particular, eq. (1) may be applied to strong depolarizations underlying the 
positive limb of the peak inward current-voltage relation. Under ideal clamp 
conditions, the slope conductance of the positive region is essentially equivalent 
to the limiting Na conductance, g'Ua, i.e. the maximum value of Na conductance 
that can be reached by depolarization from the resting level. Assuming that in 
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our single fiber model all segments of the fiber undergo a rapid, sufficiently 
strong depolarization, any segment will reach a peak Na conductance near g'Nd. 
Neglecting the non-Na currents, g^ may be taken as an approximative value for 
gp. In the presence of a large series resistance, the monitored potential E is well 
controlled throughout a clamp so that E ~ Ec and a conventional peak inward 
current-voltage diagram may be constructed. According to eq. (1), then, the 
apparent positive slope resistance for peak inward current density is 

7?sl = A{RS + r,A'/sinh (d/X')} = A{RS + Rml} (2) 

where A is the area of nodal membrane, X' the length constant, and 7?-nt the 
intrinsic resistance of the cable related to the fully activated state of the mem
brane. This formulation allows a simple interpretation of the current-voltage 
relations shown in Fig. 2 B and 4 B. With gm = 50 mS/cm2 (Fig. 4 B) the limiting 
membrane resistance, l/g'^, as derived from H-H kinetics is ~61/3cnr. A 
lumped resistance (7?s) of 3MÍ2 corresponds to a specific resistance (ARS) of 
113 Í3cnr. For 7?, = 0 the intrinsic resistance of the cable {AR[„t) approaches the 
limiting resistance of the membrane (cf. eq. (la)). With 7?s = 3 MÍ2; Rt = 0, then, 
the apparent slope conductance will be related to the true conductance, g'Nil, by 
61/(113 + 61) = 0.35. With 7?, = 200i2cm, the intrinsic resistance is reduced to 
~ 16r2cm2 so that the expected conductance ratio is ~ 61/(113 + 16) = 0.47; 
that is, the depressing effect of the series resistance is attenuated by the cable 
properties but the slope conductance still is no more than about half the control 
value. This estimation roughly agrees with the actual c-v relations shown in Fig. 
4 7?. In experiments on a real fiber or fiber bundle, eq. (2) may be used to 
determine X' from the measured slope conductance (l/7?sl) provided that the 
values of A, 7?s, and r, are known and the intrinsic cable resistance is not too 
small compared to the series resistance. (The value of series resistance may be 
estimated e.g. from the voltage jump in response to a sudden release of voltage 
clamp at the time of peak inward current; cf. Tarr and Trank 1971.) In a second 
step g'Na may be calculated from X'. 

Finally, it may be interesting to compare the double sucrose gap arrange
ment considered in this study with another technique which has been developed 
in recent years, i.e. whole-cell clamping by means of a patch pipette (for review, 
see Marty and Neher 1983). In the whole-cell configuration, one pipette may be 
used for both voltage recording and current injection on an isolated cell when 
a membrane patch is broken and a "gigaseal" has been established between the 
pipette rim and the membrane surface. The electrical resistance of a patch 
pipette is of the order of several MÍ2, depending on the taper angle and the 
diameter of the tip opening, and may largely be compensated for electronically, 
say to 90 %. The residual resistance, e.g. 200 ki2, is in series to the cell membrane 
and it still is sufficient to cause an appreciable voltage drop when the clamp 
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current exceeds 10 nA. Currents of that size are expected to occur in many types 
of excitable cells. Fig. 6 shows current and voltage responses calculated for a thin 
fiber (6//m diameter, which applies e.g. to frog atrial cells) and for a thicker 
fiber (20//m diameter, corresponding to myocytes from guinea-pig ventricle). 
Obviously, the current and voltage traces exhibit much less distortion than seen 
with the double sucrose gap (Fig. 5). In the case of the thin fiber (left panel of 
Fig. 6), voltage control is acceptable at the site of pipette impalement (x = 0); 

10ms 

10ms 

Fig. 6. Voltage clamp of an isolated cylindrical cell (an active fiber) using a patch pipette. Cell length 
200/mi; cell diameter 6/mi (A, B) or 20/mi (C, D). The ends of the cell are thought to be perfectly 
sealed. Site of impalement is the center of the cell. Effective pipette resistance is taken to be 200 ki2. 
Membrane parameters are Cm = 2 //F/cnr; gK = 0.5, gNa = 120 mS/cm2; EK = — 74.5, £Na = 43 mV. 
Internal resistivity of the fiber was set to 200i3cm; extracellular resistance has been neglected. 
Clamp step from resting potential ( — 72 mV) to -20mV. Upper row. transient Na current at the 
center of the fiber (x = 0) and at distances of 0.05 or 0.1 mm from the center (full lines); mean Na 
current density of the fiber (dashed line). Lower row: time course of membrane potential at different 
positions. 

the membrane potential overshoots the command level by about 6mV. Much 
larger voltage deviations are seen in the remote segments of the fiber, indicating 
a large voltage drop along the fiber due to axial current flow. The voltage 
deviations are equivalent to a decrease of the driving force for Na ions, 
(Vm — 7JNa), compared to a proper clamp, and are reflected by a decrease of peak 
7Na with increasing distance from the pipette. Mean inward current density 
reaches 0.83 mA/cm2 which is about 60% of peak inward current under ideal 
clamp conditions. The thicker fiber (right panel), with larger clamp currents, 
shows a distinct loss of voltage control at x = 0. On the other hand, cable 
complications are less pronounced than with the thin fiber, i.e. the voltage 
gradient along the fiber during the phase of inward current flow is reduced. This 
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is what one might expect from a larger "space constant" of the thicker fiber. In 
conclusion, even the patch clamp method, though much better defined than the 
double sucrose gap arrangement, does not ideally suit for measurements of fast 
Na inward current. 

Appendix 
Leakage current in a sucrose gap 

In the sucrose gap model used in this study the access to the test compartment 
is represented by two resistive pathways in parallel, Rax and 7?sh, and leakage 
current (= that part of clamp current which does not cross the membrane of the 
test node) is identical to the current which flows through the sucrose (cf. Fig. 2 
of the preceding paper (Solchenbach et al. 1986)). The size of leakage current is 
mainly determined by the RaJ(Rsh + 7?ax) ratio which is ~ 5 % in our case. A 
refinement of the model is obtained by assuming that leakage current and axial 
current are not separated but exchange across the fiber membrane in the sucrose 
regions (McGuigan 1974, Appendix by McGuigan and Tsien; Beeler and 
McGuigan 1978; Jirounek et al. 1981; Pooler and Valenzeno 1983). For the sake 
of simplicity, the transmembrane current may be considered as a pure ionic 
current, neglecting the capacitive component. The characteristics of the mem
brane under the sucrose is unknown. As a rough approximation, a membrane 
patch may be represented by a constant resistance in series to a constant 
electromotive force, 7ľsuc. The length constant of the fiber in the sucrose regions 
is Asuc = V̂ m, suc/(ri + rsuc) where rm suc is the membrane resistance and rsuc the 
external longitudinal resistance related to one unit length of the gap. Provided 
that rm suc is of similar size as the resting membrane resistance under normal 
conditions, Asucwill be considerably shorter than the length constant in the test 
compartment, X = -Jrjrx, and very small as compared to the length of the 
gap, b. 

Another factor to be considered is a liquid junction potential at the sucrose-
saline boundaries (Blaustein and Goldman 1966; Lammel 1981). It is due to a 
disparity between cationic and anionic mobilities. When Tyrode or Ringer 
solution is used for perfusion of the central pool, Na+ and CI" are the predomi
nant ions and, because of a larger mobility of the CI ions, the liquid junction 
potential, AU0, (taken as saline minus sucrose potential) will be positive. On the 
other hand, a liquid junction potential in the side pools will be negligibly small 
since K+ and CI" ions do not differ much in their mobility. 

When the cable parameters of the fiber in the sucrose regions (Asuc, 7ssuc) and 
a liquid junction potential at the sucrose-test solution interface are introduced 
into the model, the boundary conditions for the fiber in the test node must be 
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modified against the original notation given in the preceding paper (Solchen
bach et al. 1986). Now, we have 

9 VJdxlx = d _ 0) = - (Vd + A U0 - Esuc)q/Xsuc; (3) 

ÔVJdx(x = 0 + 0) = (Vo + AUo- Esuc)q/XsaQ - 77vp/b; (4) 

furthermore 

I={0-Vo(l-q) + AUoq}l(Rp + R%y, (5) 

E=IRh+Vd(\-q)-AU0q. (6) 

These relations are the substitutes for the original eqs. (2), (3), (4), and (7), 
respectively. Total leakage current is the sum the current injected into the 
extracellular pathway and the transmembrane current related to the two sucrose 
regions. The injected current is a fixed fraction of clamp current, 77?ax/ 
(7?sh + 7?ax). The transmembrane leakage current may be written as 

4ak. ,r = (KJrm, suc) {VQ + Vd + 2(AU0 - Esuc)} (7) 

(cf. eq. (20) in McGuigan 1974). 
We ran a few calculations in order to check to which extent the above 

modifications of the model would affect the results. According to Blaustein and 
Goldman (1966) the liquid junction potential at the sucrose/Ringer interface is 
expected to be ~ lOmV. The equilibrium potential £suc is likely to be more 
negative than the normal resting potential since the ratio of internal to external 
potassium is increased under the sucrose. Thus we took the term (A U0 — Esuc) 
as lOOmV. Assuming that Rm suc ~ 7?m = 2ki3cm2 and r,/rsuc = 1/20, the length 
constant Asuc, calculated for a fiber of 6 //m diameter, reaches ~80//m. The 
above values were used in voltage clamp simulations with gNa = 10 or 120mS/ 
cm2. A comparison with earlier computations showed that the dynamic response 
of the fiber was little affected by the modification of the model. Peak sodium 
inward current decreased by some few percent with a low sodium conductance, 
and remained practically unaltered with a high value of gNa. In contrast, the 
steady component of clamp current markedly increased in the modified model. 
This was due to a positive transmembrane leakage current which was of the 
same order as the potassium current flow across the nodal membrane. The size 
of leakage current is easy to check from eq. (7). With near zero level depolariza
tions, the leakage current is mainly determined by the voltage term 
2(AU0 — 7ľsuc). With the values given above, the term 2(Xsuc/rm SUC)(AU0 — Esac) 
reaches ~ 1.6nA. On the other hand, the potassium current in the test node at 
£c = 0is ~1.4nA. 
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