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Selection in Regulated Autocatalytic Systems 
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Abstract. The paper deals with problems involved in the formation of stable 
structures in a system, in which processes typical of bimolecular autocatalytical 
reactions occur when the respective components are directly influenced from the 
outside. Such systems can arise in biochemical, biological and ecological sphere 
(see, e.g. Glansdorff and Prigogine 1971; Nicolis and Prigogine 1977; Haken 
1977; 1980). It has been shown that a regions of so-called subcritical and 
supercritical regulation exist, manifested by the fact that the given system compo
nent would either persist or disappear. The selection of processes consists in the 
fact that generally only one solution can be realized from N alternatives as a stable 
state having the nature of a stable node, or a stable focus. When one of the 
components is supplied to the system from the exterior in a supercritical amount, 
the system can be "forced" to produce only that single substance. Thus, the system 
studied can be considered as a model of a biological filter. The results can also be 
applied in ecology and biotechnology. 
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Introduction 

It is well known that various spatial, temporal and spatio-temporal structures can 
develop in autocatalytic systems. This is based on the fact that the dynamics of such 
systems is described by means of nonlinear evolution equations. In case of 
competitive autocatalytic reactions where several substances (with concentrations 
Q) are synthetized from one basic substance (raw material or food with 
a concentration CA) with a reaction rate kh and disintegrate with a rate constant- k[, 
the evolution equations get the form (Ebeling 1976) 

—7^ = JA - CA X j fee 0 a ) 
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^ = J,+ Q(kiCA-k'<) ( = 1,2,3,... (lb) 

Here, JA and J, stand for the input substance flow and for flows of the respective 
components. 

If several kinds of animals or other living systems need the same type of food 
for their existence (e.g. several kinds of predators need the same type of preys) 
then the evolution of the system as a whole is described (in the "first approxima
tion") by the equations 

^ = JN-N^ktM, (2a) 

~ = JMl + M,(k,N-k[) ( = 1,2,3,... (2b) 

where N and M are characteristic numbers of predators and preys, JN and JMi are 
changes in these numbers per unit time due to external influence (e.g. shooting). 
An analogical situation can also occur for systems on the cellular level. We can thus 
say that a large variety of living and non-living systems can be described by the 
systems of equations (1). 

In any system of this type selection can become operative, i.e. the priority 
formation of only one possible structure, namely of that one with the most 
favourable parameters with regard to synthesis and decomposition. 

If Ji = 0, JA = constant, or Jj = 0and 2Cj = constant, the system of equations (1) 
has only one stable solution corresponding to nonzero concentration of the input 
substance and to one of n components, for which the ratio kjk\ is the highest. This 
process has been solved in papers (Ebeling 1976 ; Ebeling et al. 1977) mathemati
cally for bimolecular autocatalytic reactions under variable limiting conditions. 

The situation radically changes if J*=£0 is supposed, i.e. if there is a direct 
external interference into the concentrations of substances synthetized. Such 
a direct supply of a synthetized substance was postulated e.g., in the theoretical 
explanation of the presence of a limit cycle-state in glycolysis (Volkenshtein 1978). 
Such a system would be considered as a directly regulated system. 

A relatively great number of papers in the last years have dealt with the 
problem of the regulation of biochemical, biological and ecological systems (see, 
e.g. Boltynsky 1966; Kaiser 1980; Hess et al. 1978; Tyson and Kaufmann 1975; 
Goodwin 1965; Tomita and Kai 1977 ; Svirezhev and Elizarov 1971). The present 
paper is aimed at the mathematical analysis of the dynamics of regulated systems 
described by equations (1). Similar special biochemical systems may obviously not 
only concern biochemical processes in biological systems, but actual ecological and 
biotechnological problems as well. Results obtained in the present paper allow to 
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find a regulation pattern which would generate a desired structure in an actual 
system type. 

Stationary States in Directly Regulated Systems 

In nonregulated systems (Ji = 0) the stationary states are characterized by concen
trations of the input substance and one of the components, which can be formed in 
the system, different from zero, while concentrations of other components are zero. 
It follows from the stability theory of respective solutions that the only stable 
solution is that which corresponds to the non-zero component with the highest 
value of the ratio kilk[. Let this component have a concentration d . Other 
components may be arranged according to the decreasing magnitude of the ratio 
kilk\, so that a series is obtained 

*i *i & • *; l ; 

We shall study the effect of external regulation on a system, present without 
external regulation in the stationary state, i.e. in a state in which, according to (3), 
only substance X! has been left over. It is, therefore, sufficient to examine the effect 
of non-negative regulations only (J^O, i = 2, 3, ...). It is not purposeful to 
consider direct non-negative regulation of the first component, since this would not 
result in the development of a new quality; it is, however, purposeful to consider 
negative regulation of this component (i.e. direct extraction of the component from 
the system), since this would allow another substance to dominate in the competi
tion. 

Stationary solutions of the system of equations (2) with direct regulation are 
the solutions of the equations 

n 

J A — L A S 2J * Í ^ ' S = 0, 

Ji+Ci,(kiCA,-kl) = 0, i = l ,2, 3 , . . . , n (4) 

where the subscript s denotes stationary concentration values of the substances. In 
solving the system (4), the equation describing the concentration Cjs is chosen as 
the leading equation, and solutions for other equations of this non-linear system 
would be derived from the solution of this equation. 

The equation for the concentration Cjs can be solved in three various ways in 
dependence on the regulation Jj 

1. 4 = 0, c)s = o 

i.. J, V, ^ A S , <_JS ^ l r ' L - k k ' *• ' 
fvj •* j í qfe j" rv I rvj /Vj A. j 
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3 u n r = 
K j Kjl^As 

The first solution is trivial, decreassing the degree of the non-linear equation 
sytem (4). The second solution is non-trivial and the solution derived for i£j has 
the following form 

kl 

" k[k,~k,kl {> 

The third solution assumes regulation and converts the system of equations (4) to 
a non-linear equation for the concentration 

CAS = J-fj— ( 7 ) 

Let us assume that from n substances no other than m is regulated. Then 
equation (7) will be of the m + 1-th degree and shall generally have m + 1 complex 
roots. From the concentration of the input substance CAs, the other concentrations 
can be computed using relationship 

C , s = k'-'kC ^ 

It can be seen that this third solution encompasses all the equations having 
non-zero regulation. Relationship (8) puts several assumptions allowing the 
solution of non-linear equation (7) for positive regulations 

C A s < y (9) 

Equation (7) can be rewritten into the form 

Assuming (9), solving equation (10) we can use the known development (q < 1) 

/A = CAs 2 MkJk'd+Ci, 2 ](klk\Y+... (11) 
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According to the Descartes theorem, this equation has just one real positive root, 
its value being determined in the linear approach by the relationship 

c = h 
•—As 

2; W*0 
Thus, the number of solutions to the system of equations (4) gets reduced from n to 
n — m + 1, while the system of equations (4) would have n — m solutions of the 
second type and one solution of the third type. An analysis of the stability of the 
respective solutions will show which one of the solutions will be realized. 

Stability of Solutions , " • 

The stability of the solutions of the equation system (2) was analysed using the 
method of small perturbations (c) from stationary values 

L A
 — L A s + CA 

Ci = Cis + Cj, i = 1, 2, 3, ..., n (12) 

Substituting the above expressions into equations (2) and neglecting the quadratic 
members we obtain the following equations: 

dcA j . — C\ y, ktCjs CAs X k>c, 
at. i i 

dej 
" 7 7 = fCiLjSCA T (KÍC-AS — k i )Ci, i = l , A . • •, ft 

(13) 

Their solution can be found in the form 

Cj = const. ePi\ / = A, 1, 2, 3, ..., n 
• 

Thus, we obtain a system of linear homogenous equations with a characteristic 
matrix 

Y k,CK-p, -kiCA 

ki(-is, 

kiC2s, 

k C 
"-n v-'nsi 

K\ CAS K I p 

0 

0 

— k„GA 

0 
0 

, . . . , /CnĽAs ^n P 

(14) 
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Developing this characteristics matrix according to the first line (see Appendix I.), 
and by its annulment we obtain the characteristic equation in the form 

IJ(fe'i-fcCA, + p ) ( p + g fcC i S f c ,_ f c
f ;^ + p ) = 0 (15) 

Analysing this later equation it can be generally demonstrated that system studied 
has, when the condition k\ - fcjCA,>0 (16) is met, always a single stable solution, 
either of the stable node, or stable focus type (see Appendix II.). 

It follows from equation (15) that the system stability requires that k[ — 
kiCAs>0 (i.e. all the coefficients of the characteristic polynom, obtained after the 
multiplication of equation (15), have to be positive). 

For system with positive regulation this condition is identical with condition 
(9), required for the solution of the third type. As will be seen, this condition is 
necessary but not sufficient. For this purpose, the effect of stationary solutions (5) 
on the solution to the characteristic equation (15) should be investigated. After 
introducing the stationary solution into the first type of equation (15), we obtain 
one root of the stationary equation 

P j = - f c S ( l - | j C A s ) (17) 

With regard to solution stability, it is necessary that Re(pj)>0. This, however, is 
equivalent to condition (16). 

From the stationary solution type 2 for m regulations we obtain n - m - 1 
roots of the characteristic equation 

& j and J; = 0. According to this relationship the stationary solution type 2 can 
only be stable when the subscript /' has the lowest value of all the values i meeting 
the condition Jt = 0. We shall denote it /*. This is a result of indication (3), and the 
number type 2 solutions is reduced from n - m to one. Condition (16) would be 
thus fulfiled for positive regulation except for the component /*, for which it holds 

and 

C>-> = l?-2 k'k
k\k. (19) 

For physical reasons, the inequality C j s ^0 must hold, in addition to condition (16). 
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Considering this inequality, we obtain from relationship (19) the condition for the 
stability of the type 2 solution in the form 

2 kT~^ (20) 

rCjfC j . 

It can be seen that the stability of the type 2 solution depends on the extent of 
external regulations. 

Let us investigate the type 3 solution. Introducing condition (16) for / = ;'* into 
equation (10), we obtain the condition for the validity of the type 3 solution in the 
form 

2 T T T L - > J A (2i) 
ji=; A j Kj 

k,k\ - 1 

From inequalities (20) and (21) it follows that solution types 2 and 3 replace 
each other as soon as, at solution type 2, Xj. would attain physically improbable 
negative concentration values Cj.s. Solution types 2 and 3 represent a complemen
tary system. 

With respect to the existence of substance Xj. we can introduce the terms of 
subcritical regulation (condition 20) and supercritical regulation (condition 21), 
resulting in the destruction of substance Xj. in the system. Substance Xj. is removed 
in the competition with other substances, which become their parameters "impro
ved" through external regulation. 

The Case of One Positive Regulation 

Let us assume substance Xj becomes regulated with \-4 1. The stationary solution 
type 2 has, according to relationship (6), the following form 

r - — hi 

K i K • K\ K\K\ K \K\ K\K\ 

Cjs = 0 for i\£ 1 and i£/\ 

The validity of the solution type 2 is limited by the critical regulation determined by 
condition (20) 

'•*>«(!£-•) 
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After surpassing critical regulation, solution type 3 is obtained as determined by 
relationships (7) and (8) 

fcj J A 

fCj J) T JA 

c l s = JÍ + JA 

Cis = 0 for it j 

According to the results shown in previous sections, all the results presented are 
stable. Figs. 1—5 illustrate the situation for a system consisting of four components 
at various degrees of regulation. Curve 5 represents the concentration of the input 
substance, curve 3 that of the regulated substance and curve 1 that of the 
nonregulated substance with optimum parameters in the system. For all the cases 
shown JA = h = 1, h = 0 (Fig. 1), J3 = 0.1 (Fig. 2), J3 = 0.2 (Fig. 3), J3 = 0.4 (Fig. 4) 
and J3 = 0.8 (Fig. 5). 
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It can be seen that after the system has got over the intermediate state, it tends 
towards stationary states in agreement with the above results, the critical regulation 
being between J3 = 0.2 and J3 = 0.4. 

The Case of Negative Regulation 

Let us now suppose negative regulation of substance Xj, i.e. a substance present 
alone in a system without external regulation. Contrary to the case of positive 
regulation, we obtain for subcritical regulation determined by the condition 

J I > / A 
k[k2 

K 1 K 2 
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the solution type 3 

L As — 
k[ JA 

ki Ji + JA 
Lis — 

JI + JA 

kí 

G. = 0 for it í 

For supercritical regulation, solution types 3 and 2 are unstable according to the 
condition Ci83=0. The above two situations are illustrated in Figs. 6 and 7. In the 
first case Ji = -0.05, in the other one J ^ - 0 . 1 5 . 

o u 

Fig. 4. System with supercritical regulation; J} = 
0.4. For explanation, see the text. 

o 
u 

Time 
Fig. 3. System with subcritical regulation; J3 = 
0.2. For explanation, see the text. 

o 
U 

Fig. 5. System with supercritical regulation; J,= 
0.8. For explanation, see the text. 
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Fig. 6. System with subcritical regulation; J,= 
-0.05. For explanation, see the text. 
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Conclusions 

It was demonstrated that in a system, in which new substances are synthetized by 
autocatalytic competition, substantial changes in chemical structure occur, due to 
direct regulation. Intensification of direct regulation brings the system to 
a bifurcation point in which the stable solution undergoes qualitative changes. Over 
the range of supercritical regulations, the unregulated substance even disappears. 
This means that an adequately intensive "Feedback" realized by direct supply into 
the system of the substance required can bring the whole system to produce only 
that single substance. On the contract, by intensive extraction of a substance, which 
alone of all the substances was able to „survive" in the unregulated system, its total 
extinction can be achieved. 

We believe that the results obtained are interesting and useful both, for 
a better understanding of peculiar autocatalytic processes and with regard to their 
potential applications in the field of biotechnology. 

Appendix I. 

Let us rewrite the characteristic matrix in a conciser form 

Wo 

i>, 
b2 

b3 

bn 

a i 

U\ 

0 
0 

0 

a2 
0 
u2 

0 

0 

a3 • 

0 . 
0 . 

" 3 • 

0 . 

an 

. 0 

. 0 

. 0 

un 

= M 



Selection in Regulated Autocatalytic Systems 527 

After developing this characteristic matrix according to the first line, we obtain it in 
the form 

4=u0ulu2--

bx "i 0 
b2 0 0 
b3 0 u3 

fe„ 0 0 

. i i n - a r 

... 0 
... 0 
... 0 

. . . Wn 

6, 0 0 .. 
b2 u2 0 
b3 0 u3 .. 

bn 0 0 

- a 3 -

fel Ml 

fc2 0 
i>3 0 

b„ 0 

0 
0 
0 

Wn 

0 

" 2 

0 

0 

+ 

... 0 

... 0 
... 0 

... u„ 

+ a2-

The single determinants in this order have values biU2u3...u„, -b2UiU3Ui...u„, 
b3UiU2u*...ua, etc.; we can write thus the value of the determinant M in the form 

a,bi\ *-É»'(".-Žf) 
1-1 \ i « l «i / 

With regard to the meaning of the respective symbols, we can write equation for 
the determinant (14) in form 

M = Y\(kl-kiCA, + p)('2k,C, + p + 2 . / ' ' y* ; - ) 
M Vití (si ki - kiLAs + pj 

After arrangement and annulment we obtain eq. (15). 

Appendix II. 

A detailed analysis of the characteristic eq. (15) shows that for any indexes j for 
which holds 

k'j-kjCAt + ptO 

we can write a separate equation 

2fc Jc j .+P=-2T7 
\r2C C 
A- j \ ^ - j 5 \sAs 

•f k's-k}CM + p 
(HI ) 

Let us assume the solution in a form of a complex number p = a + ib, and let us 
develop separate eqs. (II. 1) for real and imagined parts. We obtain two equations 

a + Xk>c»- ? CMkfQ, (a + k', -k)cLr+ b* 

b = £ CA.fcfCj, ( a + j t ; _ f c . C A t ) 2 + b 2 

(II.2) 

(II.3) 
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Using conditon (16) and after multiplication, we obtain from eq. (II.2) a polynom 
with non-negative coefficients, and therefore 

Re(p) = a<0 

We can thus confirm that solutions which fulfil condition (16) (all systems with 
positive regulation) always are stable stationary solutions. Eq. (II.3) provides 
information about the nature of the solution to eq. (II.1). 

Eq. (II.3) has two solutions, one trivial (b = 0 ) when 

C k2C 
^ * ^ A s " - ! '-'js -. ̂  
^ (a + k\ - A:JCA S)2 

and one non-trivial (btO) when 

C k2 C 
^ * ^ A s ^ j *--js ^ -i 

^ (a + k\ - fc^As)2 

the first solution presents a stable node, the other one is a stable focus. 
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