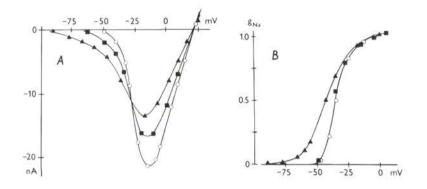
Short communication

Effect of *Tityus* γ Toxin on the Activation Process in Sodium Channels of Frog Myelinated Nerve

L. D. ZABOROVSKAYA and B. I. KHODOROV


Vishnevsky Surgery Institute, B. Serpukhovskaya 27, 113093 Moscow, USSR

Recently it has been established that γ toxin of *Tityus serrulatus* scorpion venom has a very high affinity to Na⁺ channels and can be successfully used as a marker during their purification from excitable membranes (Barhanin et al. 1983; Grishin 1983). There has, however, been some controversy concerning the effects of the γ toxin on properties of Na⁺ channels in different tissues. Thus, in neuroblastoma cells the γ toxin induces a shift in the voltage depencence of Na activation to more negative potentials, E (Barhanin et al. 1983). By contrast, in frog skeletal muscles the γ toxin causes a partial block of Na⁺ channels with no changes in the voltage dependence or kinetics of sodium currents, I_{Na} (Barhanin et al. 1984). In the present paper we give a short description of the effects of γ toxin^{*} on I_{Na} in frog node of Ranvier.

Application of 0.15—0.30 μ mol/l γ toxin to voltag-clamped nodal membrane caused an irreversible reduction in the maximum Na⁺ conductance, g_{Na} , accompanied by a negative shift in the voltage dependence of Na⁺ channels activation and a decrease in the slope of g_{Na} —E curve. The voltage shift in Na⁺ channels activation was transiently enhanced by strong depolarizing pulses, and decayed slowly ($\tau \approx 20$ s at 5—6 °C) to its initial value. Fig. 1A illustrates toxin-induced changes in I_{Na} —E relation without (\blacksquare) and with (\blacktriangle) conditioning pulsing to E = +60 mV. In some experiments, the voltage shift of g_{Na} was absent before pulsing and it always appeared after conditioning depolarizing pulses (Fig. 1 B). The steepness factor, k, of the g_{Na} —E curve (number of mV required to give an e-fold change of g_{Na}) was increased by the toxin treatment combined with repetitive pulsing from ≈ 7 to ≈ 11 , indicating a reduction in the effective gating charge of the Na⁺ channel. The toxin did not abolish complete inactivation of the channels, and, as a rule, had no effect on the reversal potential after conditioning pulsing.

Qualitatively all these effects of the γ toxin are similar to those of toxins III and IV from the scorpion *Centruroides sculpturatus* (Hu et al. 1983). The latter toxins, however, induced only a transient shift in the g_{Na} —E relation, whereas γ

^{*} Toxin γ was extracted by Dr. E. V. Grishin from the venom of the scorpion *Tityus serrulatus* using the procedure described by Barhanin et al. (1982).

Fig. 1A. Effect of 0.2 μ mol/l γ toxin on I_{Na} —E curve in the node of Ranvier of the frog Rana ridibunda. \bigcirc , Ringer without toxin. \blacksquare , Ringer $+\gamma$ toxin, test pulses (10 ms) without conditioning pulses. \blacktriangle , the same solution, each test pulse was preceded by 10 conditioning depolarizing pulses (E = 60 mV, 30 ms) duration, separated by 30- ms intervals. The interval between the last conditioning depolarizing pulse and the test pulse was also 300 ms. The duration between test pulses used in measuring I—E relation was about 1 min. Holding potential, $E_h = -100 \text{ mV}$. Ionic composition of the Ringer solution was as follows (in mmol/l): 112 NaCl, 2.5 KCl; 2.0 CaCl₂, 5 Tris buffer, 2 NaHCO₃, pH 7.2. The cut ends of the fibre were in the solution of 114 CsF. Fibre 2.3.83, 9 °C. **B.** Transient shift in the voltage dependence of normalized sodium conductance, g_{Na} , after conditioning pulsing of the nodal membrane treated with 0.2 μ mol/l γ toxin. \bigcirc , Ringer without toxin; \blacktriangle , Ringer $+\gamma$ toxin. Each test pulse was preceded by 7 conditioning pulses (E = 60 mV, 10 ms) separated by 500-ms intervals. \blacksquare , 5 min after the end of conditioning pulsing. Duration of test pulses 10 ms, $E_h = -100 \text{ mV}$. g_{Na} was normalized to its maximum. In this experiment, the toxin treatment without conditioning pulsing did not induce a shift in g_{Na} —E relation (not illustrated). Fibre 25. 3. 83 8°C.

toxin caused both 'tonic' and 'transient' changes in the voltage dependence of Na channels activation (see Fig. 1A).

Application of γ toxin to the node of Ranvier pretreated with batrachotoxin (BTX) increased the negative voltage shift of g_{Na} caused by BTX (Khodorov et al. 1975), inducing a steady-state inward I_{Na} at $E_h = -120$ mV. The slope of $g_{Na} - E$ curve was decreased, but the maximum g_{Na} remained unchanged (not illustrated). These results are in keeping both the finding that γ toxin and BTX interact with two separate receptors in the Na⁺ channel (Barhanin et al. 1982). A transient shift in the $g_{Na} - E$ relation induced by toxin after a conditioning membrane depolarization suggests that the affinity of the Na⁺ channel 'voltage sensor' to this toxin raises during channel activation, and decreases after its closing. Persistent activation of BTX-modified Na channels stabilizes γ toxin interaction with the 'voltage sensor'.

- Barhanin J., Giglio J., Leopold P., Schmid A., Sampaio V., Lazdunski M. (1982): Tityus serrulatus venom contains two classes of toxins J. Biol. Chem. 257, 12553—12557
- Barhanin J., Pauron D., Lombet A., Norman R., Vijverberg P., Giglio J., Lazdunski M. (1983): Electrophysiological characterization, solubilization and purification of the *Tityus* γ toxin receptor associated with the gating component of the Na⁺ channel from the rat brain. The EMBO Journal 2, 915–920
- Barhanin J., Ildefonse M., Rougier O., Sampaio S., Lazdunski M. (1984): Tityus γ toxin, a high affinity effector of the Na⁺ channel in muscle, with a selectivity for channels in the surface membrane. Pflügers Arch. 400, 22–27
- Grishin E. V., Kiyatkin N. I., Kovalenko V. A., Pashkov N. N., Shamotienko O. G. (1983): Identification and isolation of sodium channel components. In: III Soviet-Swiss Symposium Biol. Membranes Structure and Function. Abstr. p. 26
- Hu S., Meves H., Rubly N., Watt D. (1983): A quantitative study of the action of Centruroides sculpturatus toxins III and IV on the Na currents of the node of Ranvier. Pflügers Arch. 397, 90-99
- Khodorov B. I., Peganov E. M., Revenko S. V., Shishkova L. D. (1975): Sodium currents in voltage-clamped nerve fiber of frog under a combined action of batrachotoxin and procaine. Brain Res. 84, 541—546

Received December 6, 1983 / Accepted May 2, 1984