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Momentum Balance Equation for Nonelectrolytes in Models 
of Coupling between Chemical Reaction 
and Diffusion in Membranes 
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Abstract. The role of viscosity in coupling between chemical reaction (complex 
formation) and diffusion in membranes has been investigated. The Fick law was 
replaced by the momentum balance equation with the viscous term. The irreversib­
le thermodynamics admits coupling of the chemical reaction rate with the gradient 
of velocity. The proposed model has shown the contrary effect of viscosity and 
confirmed the experimental results. The chemical reaction rate increases only 
above the limit value of viscosity. The parameter Q (degree of complex formation) 
was introduced to investigate coupling. Q equals to the ratio of the chemical 
contribution into the flux of the complex to the total flux of the substance 
transported. For different values of the parameters of the model the dependence of 
O upon position inside the membrane has been numerically calculated. The 
assumptions of the model limit it to a specific case and they only roughly model the 
biological situation. 
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Introduction 

Theoretical studies of models which allow for simultaneous occurrence of chemical 
reaction and diffusion have now over a half-century long tradition. The first model 
of the reaction-diffusion coupling solved dates back to 1909. It was presented by 
Ferentz Jiittner (1909) from Wroclaw. Unfortunately, although based on the latest 
developments in the theory of differential equations available at that time, his 
papers have remained unknown up to the fifties. A real and effective contribution 
to the theory of reaction-diffusion coupling was made in the thirties by Damkôhler 
(1935) in Germany, Zeldovich (1934) in the USSR and Thiele (1939) in the USA. 
Although the above papers were published independently, they still constitute 
a basis for the description of the two simultaneously occurring processes, thus 
contributing to the development of chemical engineering. 
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It was as late as in the early seventies that the basic achievements and ideas of 
these papers were explicitly applied to the description of mass transport across 
biological membranes. Credit for that belongs to professor Caplan and his pupils 
DeSimone and Bunow (eg. DeSimone and Caplan 1973; Bunow and DeSimone 
1977). Papers by Cussler (1971) and Aris and Keller (1972) were of a similar 
nature, dealing in detail with the local coupling. Almost independently of the 
studies performed by specialists in chemical engineering a series of papers was 
published in the 40-ties devoted entirely to the biophysics of mass transport, e. g. 
Rosenberg (1948), Patlak (1956), Kedem (1960), Blumenthal et al. (1967), 
Rappaport (1968). These works have dealt with the theory of the active transport 
and facilitated diffusion thus describing the coupling between metabolic reactions 
and diffusion. Models developed in those papers have used the language of the 
thermodynamics of irreversible processes (see Fitts (1962), de Groot and Mazur 
(1965)), mostly using the formalism of compartmental analysis. In papers publi­
shed in the 60-ties, e. g. Kedem (1960), Katchalsky and Curran (1967), Mikulecky 
(1969), emphasis was put on interpretation of the Curie principle, since the 
reaction-diffusion coupling is one between scalar and vectorial processes. In later 
papers, e.g. Prigogine et al. (1969), Goldbeter and Lefever (1972), Selegny and 
Vincet (1980), irreversible thermodynamics was applied to the description of 
dissipative structures that arise as a result of the coupling, and to the study of their 
stability and range of occurrence. 

The third trend that may be traced back in the history of the reaction-diffusion 
coupling studies represent numerous kinetic models, e.g. Hill and Kedem (1966), 
Geek and Heinz (1976), Lieb and Stein (1972), which were used in many cases to 
describe specific, practical types of active and facilitated transport encountered in 
experimental practice. The above historical outline and classification of models of 
reaction-diffusion coupling undoubtely represents a rough approximation. In our 
opinion, however, it accurately indicates tendencies in the field. A more detailed 
analysis with more examples may be found in the paper by Galdzicki (1982). 

Along with the description of active and facilitated transport across biological 
membranes the theory of passive transport has been developed. Making use of 
latest developments in the statistical theory of transport, the kinetic theory of gases 
and the theory of mixtures, many physical aspects of the phenomenon for both 
nonelectrolytes and electrolytes have been clarified. It has been shown that 
phenomenological flux equations (including Fick's law) result from the momentum 
conservation law under special assumptions. The phenomenological coefficients 
have been expressed in terms of the friction and viscosity coefficients as well as in 
those of electric parameters of both the permeating substance and the membrane. 
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Some General Remarks on the Model Proposed 

In the present paper momentum balance equation has been used to model the 
coupling between chemical reaction and diffusion. Previous models materialized 
the essence of this coupling by means of mass balance equation, supplied with the 
Fick law, or by means of the electroneutrality condition only. In addition the spirit 
of the present paper as well as many of its approximations were taken from 
Blumenthal and Katchalsky (1969) and from a continuation of it in a series of 
papers by Vaidhyanathan (1971a, b). 

The cited papers were among the first ones introducing local coupling by mass 
balance equation and Fick's law. The momentum balance equations applied to our 
model were, in their general form for multicomponent mixtures, first derived by 
Snell, Aranow and Spangler (1967) from statistical considerations. In its final form 
the derivation differs from that reported by Bearman and Kirkwood (1958) in that 
the partial stress tensor is totally expressed in terms of fluxes of individual 
components. 

The equation has the form: 

— (p,u,)= - V(T,+ QMÁ) - ctfiit + c.^c^iu, -u,) + ctF, (1) 
at j 

where g, is the density of the i-th component; u, is the local velocity of the mass 
centre of the i-th component; c; is the concentration of the i-th component; t,i; is 
the coefficient of friction between the i-th and the j-th components; F, is the 
external force acting on the i-th component; and V is the nabla operator. 

The partial viscosity tensor, r„ is defined as follows : 

T, = - C , 2 S.jVftM, (2) 
J 

0., = A£io, (3) 

where ô„ ôj are interpreted as the maximum distances at which the interactions 
between the components still contribute to the stress tensor. Summing Eq. (1) over 
all species, we obtain an equation of motion for a fluid element as a whole. It is just 
the Navier-Stokes equation of motion however. Equation 1 does not take account 
of partial momentum that may arise during chemical reactions. In order to do that 
an additional term must be considered (Bowen (1976), Baranowski (1974), 
Miekisz et al. (1979)) 

J£. = «i2v-im-JR> (4) 
i 

where J*, is the rate of the 1-th reaction: v„ are the stechiometric coefficients, and 
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m, is the molecular mase of the i-th component. The upper index m denotes 
momentum. 

To adapt Eq. (1) to the description of transport across membranes, an 
additional term should be considered which allows for interaction between 
permeating components and the membrane molecules. For that purpose the 
frictional term of Eq. (1) can be used, assuming that membrane molecules are 
considered as mixture components fixed in space, i.e. um = 0, where the lower index 
m denotes the membrane component. Thus, the term will take the form F,m = 
- c,fimu, (see e.g. Richardson and Miekisz (1976) or Mason and Viehland (1978)). 

The momentum balance equation will thus take the form: 

1 (p,^) = - V(T, + p, u,u,) - c.Vfi, + c , 2 &,<:,(«, - u.) + Fm + JS, (5) 
at j 

Adaptation of momentum balance to transport processes across membranes 
seems to be a very simple procedure (with the summation condition changed). The 
momentum balance equations for the membrane components were not explicitly 
written. An excellent review of these problems for nonreacting mixtures only was 
presented by Mason and Viehland (1978). Two approaches to mixture transport 
across membranes were compared. The first one was based on the "dusty gas" 
model, the other one arised from fluid dynamics. 

The inclusion of chemical reactions to the theory of transport across membra­
nes was discussed from the hierarchical point of view in the work by Miekisz et al. 
(1979). 

Eq. (5) will henceforth be used to construct our model. Moreover, it is 
assumed that water flows through the membrane much slower than other compo­
nents. This assumption means that, in our model, the membrane permeability for 
water is a very small value. The contributions from water permeating molecules 
interactions are incorporated into terms describing the membrane permeating 
molecules interaction. In our one-dimensional model the viscosity effect of water 
may be omitted due to the incompressibility of it. In the opposite case the viscosity 
of the solvent can be allowed for by using the more general form of the coefficients 
/„„ and £,j in the momentum balance equation (for details, see Mehta et al. (1976) 
or Mason and Viehland (1978)). 

Description of the Model 

We consider a membrane separating two reservoirs, I and II. Also let us 
assume that both external solutions are well stirred and that they are homogenous. 
The concentrations of the species remain uniform up to the region close to the 
boundary surfaces of the membrane. Reservoir I contains only solute A (with no 
B or AB present). The substance A permeating across the membrane participates 
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1 
reservoir 

- J A ( O ) 

membrane 

A + B ^ AB 
k2 

=<U J, 

) 

II 
reservoir 

L x 

i = A,B, AB 

in an association-dissociation reaction, A + B ̂  AB. This reaction will be conside-
kz 

red inside the membrane only. For simplicity, any conditions for the content of 
reservoir II were not considered. Here, the one-dimensional case of a stationary 
state far from equilibrium is described. The system is thermodynamically open and 
the steady state is maintained by a constant influx of A (JA(0)). Also, isothermic 
conditions are assumed. For further considerations interphase conditions need not 
to be particularly specified. They only change the numerical values of cA(0) and 
JA(0). 

According to the above assumptions, the local rate of the chemical reaction 
can be expressed as: 

JR(x) = kiC*(x)cB(x)-k2CAB(x) (6) 

where [A] = a ; [B] = b ; [AB] = d denote local concentrations of the reactants, 
respectively. Following mass balance equations apply for the respective compo­
nents : 

dX. 
"dx 

- V A / R = 0 

dJB T ' 
— j VBJR-

dx (7) 

dJA 

dx 
V A B J R = 0 

where vA = vB = 1: vAB = - 1 . The respective momentum balance equations accor­
ding to Eq. (5) are as follows: 

0 = - 4 z (*A + amAuAuA)-a^+ag ^ ( u , - uA) -afAmuA + uAmAJR 
dx 

dfiB. 

) = 1 

3 

(8) 

0 = (TB + bmBuBuB)-b~ + by/ ^ ( U j - U e ) ~bfBmuB + uBmBJR 

ax ax j«i 
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0 = ~;T:(TAB + dm^BuABu \B) -- d——+ ď£ tABjc,(u, - «AB) 
ax ax j^i 

— «/ABmUAB — MABW1AB J R 

where cA = a\ cB = b; cAB = d. Here, T, depends on ô, and ô, the respective radii of 
interaction within the membrane (see Eqs. (2), (3)). They are henceforth assumed 
to be equal (symmetry of interaction) oA = <5B = ôAB = 3 x 10~10 m. 

Eqs. (7) and (8) form a set of nonlinear differential-integral equations, and 
hence they are very difficult to solve. Applying an approximation similarly as that 
in Vaidhyanathan's papers (Vaidhyanathan 1971a, b), concerning the x-coordinate 
dependence of concentration (x being the distance from the left surface of the 
membrane), an approximate solution may be obtained. We assume that the 
concentrations a, b, d are analytical functions and can be expressed as the Taylor 
series: 

1 = 0 . = « !•=() 

With that assumption Eqs. (7) and (8) can be rewritten as a set of algebraic 
equations. The assumption (9) implies that all the physico-chemical quantities 
inside the membrane are continuous and that they vary smoothly in it. 

From Eqs. (9) and (6) the reaction rates can be expressed as functions of x in 
the following way: 

jR = Í R . ť (10) 
i - 0 

where Ro = k,a(0)b(0)-k 2 t/(0) 
i i 

R, = kI[fl(0)b1 + b(0)fl,+ £ «k&,]-k7d, (11) 

Using Eq. (10) and integrating directly Eq. (7) over x, we obtain explicite 
expressions for the fluxes of substances A, B and AB as functions of x: 

JA =~qA ~R(x) J A ( 0 ) - = - q A 

JB =~qB -R(x) JB (0) = -<jB (12) 
JA B= qAB + R(x) J A B ( 0 ) = qAB 

where R(x) = f)l?,/(i + l)x ,+1 

1 = 0 

q, are the integration constants of the mass balance equations (7). Further we 
assume that both qB and qAB equal to zero, which means that neither the substance 
B nor the complex AB may cross the left side of the membrane (it is in full 
agreement with the assumptions of the model) 

In the momentum balance equations (8) gradients of chemical potentials 
appear. We express them (as we consider nonelectrolytes) as follows: 
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where p is the pressure; R is the gas constant; T is the temperature; and v, is the 
partial volume of the i-th substance. 

Eq. (13) introduces a new quantity to the balance equation, namely the 
pressure, which has not yet been expressed as a function of x. In order to obtain 
this relationship, we sum up momentum balance equations for each component and 
thus get a momentum balance equation for the mixture as a whole. In the stationary 
state the terms with £,, vanish owing to the symmetry with respect to i and j . 

From the hierarchy condition — that the Navier-Stokes equation for the 
whole mixture must result from the momentum balance equations for individual 
components (Richardson and Miekisz 1976) it may be assumed that: 

Íc ,V M , = V„ (15) 
1=1 

Although this equation reminds the Gibbs-Duhem equation applicable only to 
mechanical equilibrium, here it follows from the hierarchy of dynamical description 
of mixtures. 

In the final stage of the calculations two cases have been considered: one in 
which partial viscosities were neglected and another with full balance equations, so 
as to investigate the role of viscosity in the coupling. 

It is assumed here, and it is a customary assumption in models of this kind, that 
the total carrier amount is locally the same throughout the membrane regardless of 
the dependence of both b and d on x (it turned out that this assumption cannot be 
met if partial viscosities of the components are taken into account). 

On inserting Eqs. (12), (13), (14), (11), and (9) into Eqs. (8) a set of three 
algebraic equations is obtained. Then, assembling terms of the same order with 
respect to x, and equating the coefficients of the respective powers of x to zero (the 
equations become identities), sets of equations for the coefficients a„ 6„ d„ 
respectivly, are obtained. In this way, recurrence formulae for the expension 
coefficients are obtained. Equations for these coefficients (Galdzicki 1982) express 
the fact that the knowledge of the lower order Taylor expansion coefficients allows 
to compute the higher order coefficients. In this way, both the reaction rate and the 
concentrations of species profiles can be computed to any order of accuracy desired 
using experimentally available information. In our paper only the first and the 
second order terms were used in numerical calculations. The third order terms 
obtained turned out to give negligible corrections to calculated quantities similarly 
as in Vaidhyanathan (1971a). The fact that the membrane thickness is 10"8 m and 
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that higher order Taylor expansion coefficients are of decreasing importance, are 
employed to terminate the Taylor series with finite term. 

This assumption allows to calculate the fluxes given by Eqs. (12) up to the 
third power of x (Galdzicki 1982). 

Results 

The algebraic equations obtained for au bu du a2, b2, and d2 make it possible to 
calculate the fluxes JA, JB, and JAB, and the chemical reaction rate, as functions of 
x. From the mass balance equations it follows that in stationary state JA""1 = 
JA + JAB- TO investigate the coupling of chemical reaction with diffusion, a quantity 
should be introduced which would characterize the strength and effectiveness of 
the coupling. Such a quantity, we call it factor Q, is defined as follows: 

Q = (JA B -qA B ) /J r ' (16) 

The contribution of chemical reaction to the flux of the complex AB is expressed by 
the substraction of q ^ from JAB (Eq. (12)). Q characterizes the degree of the 
complex formation of the substance A, i.e. it provides information about how the 
flux of the complex varies relative to the total flux of A due to chemical reaction 
occurring within the membrane. The degree of the complex formation, Q, is a more 
general form of facilitation factor which was first introduced in similar topics by 
Kaper et al. (1980). The factor Q depends on all pameters that characterize the 
system. This dependence was examined in the final phase of our study. The results 
are shown in the plots. 

It was shown that values of Q within the interval (0.1) correspond to situations 
with fluxes JA and JAB being in the same direction, and JB in the opposite direction. 
Such situations prevail in many models of facilitated transport. It should be pointed 
our here that the model presented will be a model of facilitated transport of 
physiological substances if one of the following applies: 

a) additional boundary conditions are assumed: JB(L) = JAB(L) = 0; in that 
case the rate of chemical reaction is reserved and hence both the carrier and the 
complex do not leave the membrane; 

b) the complex disintegrates while crossing the righthand surface of the 
membrane, and hence the carrier is allowed to exist outside the membrane. The 
carrier might also be undetectable if it entered rapidly further metabolic reactions. 

Situations for which Q > 1 correspond to models in which the whole transport 
of substance A goes against its own concentration gradient, this being often 
referred to in the literature as active transport. 

Values of Q < 0 correspond to situations with negative coupling and are due to 
a marked reversal of the chemical reaction rate within the membrane. No example 
situation in the biophysics of transport is known to us to which this could apply. 
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Q 

0,8 

0,6 

0,4 

0,2 

2 A Q a X10-*m 

Fig. 1. The complex formation degree versus the location m the membrane for various compo­
nent-membrane friction coefficients a /,m~10'6, b /,m~1015, c fm~lO" For symbols, see text 

The study of the dependence of Q and JR on values of parameters £„, /Im, ki, 
k2, and partial viscosities respectively has been performed using a small computer 
of the Commodore 4016 CBM series, and results are presented in six plots. 
Numerical values of parameters of the model used for the calculations are 
presented in Appendix. 

Analysis of the plots enables to draw final conclusions concerning both the 
behaviour of the factor Q and the rate of chemical reaction in the membrane. 

Collisions within the membrane are of different nature than in gases or in 
solutions. Molecules of the permeating substance have to make their way through 
the membrane and hence the frequency of collisions as well as their effectiveness 
are substantially greater than in ordinary solutions or gases. Also, with large 
friction coefficients /im the degree of complex formation must be smaller, (see Fig. 1 
and Appendix) since the reaction rate suddenly decreases. 

A further important factors are the interaction between the components and 
the partial viscosities. These factors, when strong enough, cause the interacting pair 
of particles to stay longer at an effective distance from one another and thus 
increase the probability of chemical reaction between them, especially with large 



156 Galdzicki and Miekisz 

Q(10-")~3,5 

Fig. 2. The complex formation degree versus the location in the membrane for various compo­
nent-component friction coefficients. a:£„~1016, *>:£„-10", c:£„~1014, d:£„~10n, c:?AB~1016, 
/•'CAAB~1016, (other £„ equal to zero). For symbols, see text. 

£AB- However, the decrease in velocity of the permeating components (see Fig. 2 
and curves a, b, d) is in competition with this effect. 

In situation with sufficiently large £AAB and relatively small other coefficients 
£„ the effective dissociation constant (not equal to k2) becomes much larger than 
the effective association constant (not equal to ki). In this case the degree of 
complex formation suddenly decreases and becomes even negative, as the rate of 
chemical reaction reverses. 

When we take account of partial viscosities (putting ô, = 3 x 10"10 m) we get 
a marked increase in the degree of complex formation. Shinitzky et al. (1980) have 
shown experimentally that the regulatory role of viscosity is reflected in two 
contrary effects: 

a) a decrease in velocities of diffusing molecules, particularly of the large ones 
b) an increase in the probability of complex formation due to increasing 

accessibility of the carrier to the molecules of the substance transported. 
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2 4 6 8 X . 1 0 -S m 

Fig. 3. The complex formation degree versus the location in the membrane regarding partial viscosity 
for various component-component friction coefficients. a^—lO13 , b:£,,~1012, c:£„~10" and 
Ó, = 3 x 10~10m. For symbols, see text. 

As can be seen from curves b and c, both effects change the value of the factor 
O for Cij = 10" n ± 10'1 2 kg. m7(mol2 . s) in a similar way. 

Only when £„ = 10"13 kg. m3/(mol2. s) a substantial increase in Q (curve a), is 
observed i.e. the second effect begins to dominate, as confirmed by results given in 
Fig. 6. 

It is very interesting that even the factor Q varies only linearly for large values 
of the association coefficients ki and for small values of the dissociation coefficient 
k2. Most likely, this is due to the condition of stationarity — compare Vaidhyanat-
han (1979b). 

Figure 5 shows how Q increases with the increasing rate of penetration qA, of 
A into the membrane. This is due to an increase in the probability of association at 
lower velocities. 

The results presented show that the proposed model of reaction-diffusion 
coupling offers great possibilities to study the effect of the interactions mentioned 
(the chemical ones expressed by constants ki and k2 and those of frictional-viscous 
nature) on the coupling strength. 

Discussion 

Description of coupling between chemical reaction and diffusion by introducing the 
general form of the momentum balance equation made enabled the investigation of 

Q(10-)-12,2 
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Q (10-")- 166,0 

Q(10-«)—16,0 

fb 

Fig. 4. The complex formation degree versus the location in the membrane for various rate constants 
for the association and dissociation reactions, respectively. a:k, = 1000, k2 = 10, r>:k, = 100, k2 = 10 
c:k,=k2 = 10, d:k, = l, k2 = 10 e:k, = l, k2 = 1000, / :k,=0.1, k2 = 1000. For symbols, see text. 

the regulatory role of viscosity in phenomena associated with the transport across 
membranes. 

It would be difficult to compare the obtained results with known experimental 
data on a quantitative level as parameters necessary for calculations are unavailab­
le. We therefore performed a qualitative comparison and have tried to throw light 
on the problems of coupling. 

Gavish analyzed in his papers the viscosity effect on enzyme catalysis in 
experimental and theoretical studies (Gavish and Werber 1979; Gavish 1980). The 
fact that the dynamic state of the molecular structure of the enzyme-substrate 
complex is governed by interaction with surrounding molecules through two 
competing processes: random collisions and the action of friction forces, is the most 
important thesis of those papers. The action of the former increases the kinetic 
energy of the various modes of motion, and the latter dissipates their energy by 
viscous damping. This is the reason why "the transient state" becomes the engine 
of enzyme catalysis, especially for membrane-bound proteins. These predictions 
and results are compatible with other experimental facts, e.g. Lass and Fischbach 
(1976), Read and McElhaney (1976), Shinitzky et al. (1980). Both regulatory 
aspects of viscosity (Fig. 3) have yielded equal contributions; similar results were 
also obtained by Shinitzky et al. 1980. The effect producing an increase in the 
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- 4 

- 6 
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-10 

Fig. 5. The logarithm of the complex formation degree versus the location in the membrane for various 
influxes. a:qA = 1.2xlO % 6:qA = 1.2x 10"\ c:qA= 1.2 x 10 4, d:qA = 1.2 x 10'5. For symbols, see 
text. 

chemical reaction rate and resulting in higher values of factor Q just dominate over 
the limiting value of viscosity (MacDonald and MacNaughtan 1979). The latter 
value depends on values of other parameters. 

It has been known from thermodynamics of irreversible processes that 
chemical reaction is directly coupled, with the gradient of velocity, i.e. with the 
viscous effects even in isotropic systems. The dynamic-kinetic considerations 
presented above strictly confirmed this fact. It would be also interesting to 
investigate for which values of ki and k2 the influence of viscosity becomes 
negligible.* 

In its present form the model seems especially suitable for the description of 
transport of drugs (see Vaidhaynathan 19871a) and nonelectrolytes across biologi­
cal membranes (see Kotyk 1973). It could be an alternative description of carrier 
transport of ions after making some corrections for the presence of electric field. 

6 8 X-10-9m 

* A personal suggestion of Dr. J. Sandblom. 
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XlO-'m 

Fig. 6. The logarithm of the reaction rates versus the location in the membrane. The numbers denote 
respective curves (subscripts) in previous figures (Figs. 1—5). 
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Appendix 

In numerical calculation data close to results obtained experimentally were used 
(see Vaidhyanathan 1971a,b, 1975; Katchalsky and Curran 1967). 

SAB = EBA = 1.6 x 1012 kg . m3/(s . mol2) 

CAAB = £ABA = CBAB = £ABA = 1 x 10 n kg . m3/(s . mol2) 

/A m = 6 x l 0 1 1 k g / ( s . m o l ) 
/Bm = fABm = l x l 0 1 1 k g / ( s . m o l ) 

k, = 10 m3/(mol. s) k2 = 1000 1/s 

q A =1 .2x l0" 3 mol / (m 2 . s) 
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a0 = 200 mol/m3 b0 = d0 = 100 mol/m3 

mA = 0.2 kg/mol mB = 0.2 kg/mol 
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