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Thermodynamic Instability in DNA 
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Abstract. The exact Hill's treatment of the Ising model describing DNA has been 
developed to make it applicable to the study of environment-coupled instabilities in 
DNA. Thermodynamic properties of DNA close to a co-operative order-disorder 
melting point have been investigated in terms of the developed Ising model. 
Assuming a weak coupling between the environment and Watson-Crick hydrogen 
bonds in DNA, it has been shown that the partition function can be broken down 
into a product of an environmental part, random coil part, and a helix part, the last 

one being dependent on w^/kT and waP/kT only, where H £ and wnls are DNA 

energy melting parameters. If the energy parameters depend on the volume V 
only, then the specific heat at a constant volume Cv.p tends to approach very large 
values along the melting curve; however as may be deduced, the Ising-DNA model 
is unstable in the immediate neighbourhood of its melting point and undergoes 
denaturation. A suitable experimental measure for the stability of the native 
double-helical structure of DNA was formulated. Equations were constructed 
which permit the prediction of the typical thermodynamic behaviour of helix-coil 
transition under weak interactions with the environment. Instability in DNA has 
been shown to occur very close to the melting curve only, and Cv,n>0 (thermal 
stability) and the isothermal compressibility j3e > 0, j3a > 0 (mechanical stability) 
— are all positive definite quantities, may be expected to parallel each other much 
from the melting point. 
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Introduction 

Recent success in the determination of relationships between genetic maps and 
nucleotide sequences for several viruses has resulted in a deepened interest in 
establishing a more exact relationship between the sequence and the ther­
modynamic stability of DNA (Lyubchenko et al. 1978; Gabbarro-Arpa et al. 
1979; Azbel 1980a,b). A sensitive experimental approach to this problem is the 
analysis of high-resolution melting curves obtained by monitoring melting process 
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associated changes in UV absorbance (Ansevin et al. 1976; Vizard 1976; Gotoh et 
al. 1976; Yen and Blake 1981). 

The stability of DNA is usually examined in terms of the response to changes 
in pH, ionic strength, temperature, and to various auxiliary chemical agents. The 
major feature of a detailed model of the solvent melting of DNA is that melting 
must proceed via the opening of many "gaps" rather than "unzipping" through the 
entire DNA molecule (this and the "all-or-none" model: all base pairs are coil or 
helix). The conditions of the stability of native DNA have now been quite 
adequately characterized: melting of the helical structure is observed in a large 
variety of non-aqueous solvents. For example, from Azbeľs (1980a,b) high-
resolution melting curves it follows that the conformational state of DNA 
correlates with its energy level at any temperature point within the range of 
melting, and that it exhibits discrete order-disorder regions, since melting results in 
formation of one or more phase boundaries that require more energy than 
normally needed to dissociate a given base pair. (The concept of phase boundary, 
the interphase between helical and coil regions, is an important factor in the overall 
energy consideration). In the DNA system, the helix-coil transition, in which the 
macromolecular configuration change also occurs, is relatively sharp, so that it is 
useful to consider the melting process in terms of a co-operative phenomenon 
occuring within a narrow temperature, pH, or solvent composition range. In 
a rough approximation, it is therefore possible to summarize the available data on 
the stability of DNA in terms of the conventional Watson—Crick hyd­
rogen—bonding model of DNA stability having in mind that solvent medium 
(chemical agents including carcinogens) may radically affect the stability of 
hydrogen bonds, and that in a molecule of the structural complexity of DNA, other 
stabilizing and destabilizing factors must certainly be present (Sturtevant et al. 
1958). 

While the theory on helix-coil transition, which is of interest in association 
with the theoretical study of co-operative phase transitions in general, has been an 
active field of study over the past two decades, chemical instability of DNA in 
terms of a more exact relationship between the sequence and the thermodynamic 
stability has been the subject of relatively recent studies only. Nevertheless, there is 
still a justifiably widespread interest in this field. However, in order to understand 
DNA instabilities found experimentally in reactive DNA-chemical agent systems it 
is necessary to estimate the importance of general thermodynamic properties of the 
genetic material. The aim of this paper is to throw light on the physical basis of the 
solvent effect (e. g. generally denaturant) in the DNA stability, and to derive 
thermodynamic conditions under which DNA becomes instable. This problem has 
its own theoretical and mutagenic significance since the DNA denaturation process 
is widely assumed to lie at the heart of many of the most fundamental processes in 
living systems. 



Thermodynamic Instability 501 

a b 

Fig. 1. (a) schematic representation of polynucleotide DNA — chains with hydrogen bonds (/3) formed 
between nucleotide pairs in the straight portions (a) but with no hydrogen bonds formed in the 
"loop" portions (/>). 

Description of the model and underlying assumptions 

The stability of the Watson—Crick model of DNA is attributed to the presence of 
highly specific pairs of hydrogen bonds between the purine and pyrimidine bases 
attached to the phosphosugar chain skeleton. If other secondary bonding is the 
source of stability, our principal considerations remain valid. 

The co-operative nature of the instability of DNA is due to the necessity of 
having a minimum sequence of broken bonds contiguous with another one before 
sufficient flexibility is introduced into the structure to permit contraction. From 
a priori considerations hydrogen bonds which are broken singly in a very long 
linear array, would be believed to be isolated from each other at small extents of 
reaction. This is a result of the entropy of mixing which maximizes the probability 
of a dispersed configuration. However, it does further permis us, under certain 
assumptions, a somewhat speculative analysis of the thermodynamics of DNA 
stability. It is accepted that the DNA molecule is approximated as a chain of base 
pairs, each of which exists in either of two states: the ordered state (j9), or 
randomly coiled configurations (a) usual to chain polymers. As shown in Fig. 
1 a sequence of ordered base pairs fi forms a region of double helix, while 
a sequence of random residues a constitutes a random coil chain part. This 
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structure involves the formation of a random-coil chain loops. If special properties 
of chain ends are neglected and the states of the whole chain and their energies are 
enumerated, then for the system whose states are discrete, stated in the traditional 
helix-coil theory which is of obvious importance for the full understanding of the 
deformation and stability of DNA, the canonical ensemble partition funkction is 

Q = 2 e x p ( - y E r ) , y = l / k T , ( 1 ) 

(r) 

where the index {r} enumerates all accessible states characterized by the corres­
ponding free energy Er, k is the Boltzmann constant; and T is absolute tem­
perature. 

There are several well-known methods for evaluating complicated partition 
functions, e. g., the matrix method and the method of steepest descent; but one 
method, the method of the maximum term is however particularly well adopted to 
this chain problem, and we shall confine our atention to it. 

Hill's partition function for the one-dimensional Ising model of DNA 

It is the purpose of the present section to give a brief review of the theory of 
Hill (1959) and to point out certain of its special consequences related to DNA. 
Here we shall consider the case of duplex DNA with two identical strands. Hence, 
the equations presented here may be regarded as a special case of general 
equations given in section I of Hill's paper. 

Figure 1 (a) is a schematic representation of two polynucleotide chains, 1 and 
2, with hydrogen bonds formed between base pairs in the straight portions but with 
no hydrogen bonds formed in the "loop" portions. The number of bases in each 
DNA chain must be identical in the helix and in the coil regions. In each chain, 
a base is in the state B if it is hydrogen bonded to a base in the other chain and it is 
in the state a if it is not hydrogen bonded. We put jaija2 — ja, and jmjm — jfi, where ;'„ 
and jp represent intrinsic partition functions for two kinds of bases, including only 
those contributions which differ in their a and B states. 

According to the procedure described by Hill, the canonical ensemble 
partition function Q for a very long DNA molecule in the absence of solvent, 
containing a total of N bases and Na a — bases (e.g. NP=N-Na B — bases) in 
each chain and Na(J phase boundaries between a and B groups, may be written in 
the form 

Q(N,„ N„, NafS, V ,T) = n /'-• /T N " zN"e IT* tr (2) 

Here 

z = exp(-yK>a(i) (3) 
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where w„r) is the free energy for the nearest neighbour aB interaction at each of the 
boundaries; the contribution of both chains is included in waP. N„p is the number of 
beginnings of sequences of coil bases. Ca" and r™ax are the largest terms in the 
summations 

S t. 2 t, (4) 
(ml In) 

where 

t„=Q„ n*,"\ /«,=o, n yz- (4') 
i k 

as determined by the maximum term method. The quantities appearing in these 
summations have following meaning. Here, Qe means the number of ways to divide 
N - N„ - (N„p/2) B base pairs, up into (Naft/2) groups if there are nk 6 groups each 
with k(k 2=0) of these B units (a total of k + 1 base pairs in a group): 

Ofl = (JV^/2)! / l \ n j (5) 

subject to the restrictions 

2 nk = Na„/2 
k 

2knk = N-Na-(Kp/2) (6) 
k 

Once the sequence of helix and coil bases has been specified, the number of 
denaturated base pairs is determined. yk is the Boltzmann factor 

yk = e x p ( - y w 0 (7) 

where wi is the free energy of each nk group when native. The principal 
contributions to wk are dipole-dipole electrostatic interactions. Briefly, a group of 
A: -f-1 base pairs of B units is assumed to have a free energy excess wk of that of 
k + l pairs of single B units. Thus, the factor yw measures the contribution of the 
partition function of nk group of bonded base pairs relative to that of nk free bases. 

Similarly, the number of ways of distributing the excess (over Nat3/2) of a 
bases is 

Qa = (Nap/2)\ / f j m , ! (8) 

with restrictions 
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2 m, = NV2 
i 

• 2 im, = N„-(N„„/2) (9) 

The nonhydrogen-bonded regions (loops) are represented in Fig. 1(h) by 
horizontal clusters of one or more a bases in each chain. It is assumed that a loop 
containing i + \ a bases in each chain has a free energy excess w° of that of i + 1 
single a bases in each chain. The principal contributions to w" appearing in 

x, = exp( - yw") (10) 

are electrostatic and entropic contributions. We note, that by definition, y„ = x0 = 1, 
and the of {m} and {n} sums in Eqs. (4) are over all sets of m' s and n' s satisfying 
Eqs. (6) and (9). 

Ca* and t™* were determined independently for given N„ and N„e. For lnC" 
we can write 

/„,— = _ [N„ - (NaP/2)] Inp + (Nap/2) In Xa (11) 

where 

p = e x p ( - a „ ) , 2 a = E * ' P ' (12) 
i 

Here, aa is the undetermined Lagrange's multiplier, and 

l=N„-(NaPl2) 
*"'/2"' ' (N„p/2) ( l i ) 

S,', = 2 k , p = p(3S a /3p) (14) 

Equation (13) determines p as a function of N„ and N„p. Similarly, for the most 
probable distribution it holds 

lntr= -[(N-Na-(Nafl/2)]lnq + (Nap/2)ln Zp (15) 

where 

q = exp(-o>) , X p = 2 ykq
k (16) 

k 

Further 

- N - N a - ( N a g / 2 ) 
V Z ' ~ k (N„p/2) ( 1 7 ) 
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Hp = -Zkykq
k = q(d-Zli/dq) (18) 

k 

Equation (17) determines q as a function of N„ and N„p. 

Hill's partition function for the maximum term 

We shall further approximate the Hill partition function (Eq. 2) using the canonical 
ensemble and the maximum term method. The system — DNA is characterized 
thermodynamically by the total number of N — bases of which N„ are helix, and 
temperature, T. Our task is to find the configurational degeneracy with the nearest 
neighbouring interaction energy wap. Suppose that there are altogether y(N„, N, 
N„p) configurations with exactly N,lP phase boundaries aB. That is, suppose there 
are y(N„, N, N,lP) different ways in which N„ base pairs can be distributed on N 
sites giving NaP phase boundaries of aB interaction. The contribution of these 
configurations to Q(N„, N, N„p, T) is q(N„, N, N„p). exp ( - yN(,pVva(i) and the full 
expression for Q(N„, N, NllP, V, T) is 

0(Ntl, N, N„„, T) = ; ,HTN" 2 q(K, N, N„P) £"$" exp ( - yN„pwnP) (19) 
N„„ 

where the sum is over all possible values of N,tP for given Na and N. Having related 
0(N„, N, N„p, T) formally to g(Na, N, N„p), our next problem is to find an explicit 
expression for y(N„, N, N„p). We might note at the outset that for the total number 
of configurations with given N„ and N we must have: 

q(Na,N, Nrili) = N J ^ [ K ) l (20) 

In view of this relation, it is clear that Eq. (18) reduces, as it should, to equation 

Q(Na, N, A U T) = /!>/,rN" NJ(^LNa)l E " t r (21) 

when Wap = 0. 
Since we shall be using only the maximum-term in the sum in Eq. (19), N„, N, 

N,lP may all be regarded as very large numbers. 
Analyzing this problem in detail for the configurational factor y(Na, N, NaP) 

we obtain 

g(N„,N,N„p) = - W'- l ) ! 

[(NaP/2)-l]l[(N-(NnP/2)]l 

( N - N . , - 1 ) ! 
[ ( N V 2 ) - l ] ! [ N - N „ - ( N n / i / 2 ) ] ! 

(22) 
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If we drop unity compared with large numbers N„, N, and if this formula for i/(N„, 
N, N„is) is now inserted into Eq. (19) we obtain for 0(N„, N, N„„, T) 

Q(N,„ N, N.„„ T) = ŷ -yr? N - ^ 
iin(N„P/2)\[N„-(Nnp/2)]\ 

( N - N ) ' 
/:r/;;,;,xexp(-yN„pH',<„) (N< I ( J/2)![N-N„-(N„ ( 1/2)]! 

The sum is however difficult, so let us use the maximum-term method. It says that, 
under appropriate conditions, the logarithm of a summation is essentially equal to 
the logarithm of the maximum term in the summation, i. e., we replace lnQ(N„, N, 
N„p, T) by In (maximum term in Q). 

lnQ(N„, N, N„(i, T)= N„lnjl,+(N-N„)lnjtl + hiC"<+lnt"r + hm(N„, N. 
N„(1)-yIV„(lw„(l (24) 

Then from the condition 

/9/»Q\ _/8//it/\ , 3 hit','."" \ ,dlnt',T"\ 
( a N j N , l N , U N ( J N „ . N . , + I 3N„„ ) N . , . N . , + 1 3N„„ ) N „ . N . 7

 ytV"" 
(25) 

and with respect to the Eqs. (11), (15), (22), and also (13). (14), (17), (18), we find 

[ N , . - ( N V 2 ) ] [ N - N „ - ( r V V 2 ) I = 1 
(NJ, /2) J 4z->Z„í/2 / i

 l ' 

and when denoting equilibrium values as 

N* = N - (N*P >2), Njl = N- N, - (N%I2) (27) 

where N'f,P is the value of N„p giving the maximum term in the sum in Eq. (23), 
then 

(N%Y (2z)2 pl„qlp
 u " } 

This has the form of a chemical equilibrium quocient, for the "reaction" 

2(aB) ^ (aa) + (BB) (29) 

The "equilibrium constant" (2;) '(pi.,,) '(qlp) ' is consistent with the partition 
functions: 

j„„=(pl„) ',/,„< = (<, Z(i) \j„P = (2z) 2 

That is. 
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Ujlip/jili=(2z)-2(pl„)-'(qll>y' = 
(30) 

= [exp(ywuP)/2]2 

I exp[ - y(w, + (i + I K ) ] I exp[ - y(wk + (k + I K ) ] 
i k 

where a',,= o,Jy, and a'p=oply. 
Three types of parameters occur in Eq. (30). 

One is the z(T) parameter also known as the co-operative factor (frequently 
designated as o(T)) representing interaction between the helical and coil regions. 
A co-operativity free energy w„p is associated to every pair which is helical, but 
whose next neighbour is in the coil state. This corresponds to the fact that an extra 
amount of free energy is needed to denaturate the first base pair in a region. w,lP is 
assumed to have the same value for all base pairs. z(T) is defined here as 
a tendency for bases in the same state to group together, or to "aggregate" in linear 
sequences. Another parameter appearing in definition of i„ (Eq. (4)) is yk, which 
here has the meaning of an equilibrium constant for nk pairs. The factor yk (>() 
since w k <0) contains the decrease in statistical weight owing to the restriction of 
freedom of motion, but it is enhanced by the Boltzmann factor resulting from the nk 

group hydrogen bond energy. However, an abnormally large decrease in statistical 
weight is assumed to be caused by the formation of the first hydrogen bond (nk=\) 
after several unbonded bases (m, > 1) since such a hydrogen bond decreases the 
freedom of the bounded and restricts the freedom of the bonding base pair itself. 
Since the same Boltzmann factor is involved, this contribution to the partition 
function is frequently written as product ykz, where z is less than a unity. From 
z(T)< 1, follows that w,,/, <0 . The negative w„p means that the phase boundaries 
attract each other. Generally, in the case when z is a unity (w„p = 0) there is no 
interaction between states of successive bases. An infinite helix-coil phase bound­
ary (w„p = oo) corresponds in our treatment to z equaling zero. The third paramet­
er, x„ is defined by the w," interaction parameter, determining the stability of the 
random-coil conformations. It would appear a very crude approximation to break 
w" down into interactions between the nearest neighboring bases. It is quite 
evident that the stability of the random coil structures of DNA which with excluded 
volume are not mutually easily penetrable depends on our understanding of the 
factors that are also important for the helix stability. The sum of all these 
interaction factors would then determine the helicity and stability of a particular 
region of the sequence. The exact contributions of these counteracting effects on 
the stabilities of the particular regions of the random coil structures occurring in 
Eq. (30) are difficult to assess at present. 

When we define rj, the fraction of broken hydrogen bonds as r; = Nf,„/N, and 
0 = NT,P/2N and use Eq. (28) we find 
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^-0)il
07

r]-0) = (2zr2(pl„)(qlp) (31) 

Equation (31) is a quadratic function in 0 , and gives N*p as a function of N, N„, 
and T 

N ^ = 2 0 ( 1 _ Z 0 ) 
2N k+\ l ' 

where 

l=[\-Ar](\~r])(\-(2zr)(p^„r\qTP)-r2 (33) 

These equations document the importance of molecular states of mixed character 
(i.e., partly helix and partly random coil conformations) in the region of DNA 
melting. Now, instead of the partition function (23), we have 

Q(N,„N,N%uT) = ft-fi * 
[(JVí„/2)!(JV„-(NV2)] 

(N-N„)\ 
(N;y2)![N-N„-(N*, i /2)]! 

exp(-YN*pw„p) (34) 

A major problem of the above analysis is the validity of the parameters and of the 
theoretical model for temperatures below the helix-coil transition. Two considera­
tions are relevant. First, what is the influence of temperature on the thermo­
dynamic w's parameters? Second, can the physical process of the opening of large 
groups of base pairs be extrapolated to the opening of one base pair (m, = 1). 
Calorimetric measurements of several DNA sequences can answer these questions. 
Recent advances in methods of DNA synthesis should make better model systems 
available allowing to examine base-pair opening using melting curve and calorimet­
ric analysis. DNA oligomers containing one to five A.T pairs flanked by defined 
lengths of G.C pairs provide an ideal system to examine the opening of internal 
A.T loops of different lengths. It has previously been noted (Lukashin et al. 1976. 
Wartell 1982) that a base-pair change has negligible effects beyond a few base 
pairs. This observation, however, assumes that the nearest-neighbor model de­
scribes accurately DNA co-operativity. If longer-range interactions are significant, 
then the influence of base-pair changes on the thermal stability of the surrounding 
region could be stronger. The correlation length may be said to increase consider­
ably as the temperature or ambient environment shifts the base-pair opening 
equilibrium (29) to the helix-coil transition regions. In this regime, base-pair 
changes can affect base-pair opening in adjacent regions. 

Effect of the solvent 

Almost all theories, except for e. g. the approach of Gibbs and DiMarzio (1959), of 
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order-disorder phenomena are based on the implicit hypothesis that in constructing 
a partition function, the configurational partition function can be written without 
taking into account the strong coupling between DNA and the environment. 
A realistic treatment must allow for the possibility of interactions of molecules of 
the environment with N—H and C = O groups of helix and random coil regions via 
hydrogen bonds. It is possible to check on this hydrogen bond interactions for 
regions far away from the melting point since many properties (i. e., thermal 
expansion, heat capacity, elastic constants, torsional stiffness of the coil, effective 
torsional stiffness of the duplex etc.) would then essentially depend on the 
contribution of the environment. 

In this section we shall consider a simple DNA model and we shall show that 
effects of the environment which have so far been ignored, can rigorously be taken 
into account without altering the formal appearance of the equations in the above 
section. In this paper, the constructed partition function (Eq. (34)) will serve as 
a framework onto which we shall graft the appropriate factors for coupling; so, 
instead of being concerned with the thermal behavior of an isolated one-dimen­
sional Ising model of DNA usually represented as a "clamped" system of bases 
only, we wish to consider the mechanical behavior of a coupled DNA model which 
is a more realistic compressible model of DNA. Now, the variants of the partition 
function obtained on allowing for interaction are simpler if all the potential groups 
which are not intramolecularly hydrogen bonded are all allowed to be coupled with 
equal facility. The same is supposed for the intramolecularly hydrogen bonded 
bases. Thus, the partition function Q for a DNA chain with N„ coil bases, Nct, 
component molecules of the environment bound to N„ a sites, and Ncp component 
of solvent molecules bound NP=N — Na 6 sites, can be written in the form 

Q(N„, N, Nm, N„ V, T) = y-- ( N ^ / 2 ) ! [ ( ^ i ( N , p / 2 ) ] ! I ? " * 

x NJ N „ (N-Na)\ 
N e „ ! ( N „ - N e a ) ! r " h (NftP/2)\[N-N,l-(N*p/2)]\ 

X q^NcP\(N-Nl-NcP)\tr exP(~ V N * ^ ) ^ " < i (35) 

where the partition function for a bound molecule of the enviroment is qP(t) at 
helix (í site and qa(T) at a coil a site, and qc is a molecular partition function for 
each of the Ne-Nea — NcP molecules of the environment which are "free" 
hydrogen bonded to each other but not to the DNA chain. 

The essential feature of our Ising model of the interrupted DNA is the 
competition between the helical and coil regions of the chain to grow at one 
anorher's expense. This presumpts the existence of both helical and coil configura-
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tions and merely determines the relative probabilities of their occurrence under 
specified external conditions. These probabilities depend upon the specification of 
the end-correction. The model we have used completely neglects the role of the 
environment on the w„p, w'j and wk free energies, and especially of the environ­
ment-end effect and is therefore incomplete in this sense. For the present we need 
not specify the model of DNA in detail. As far as the values of w„p, w'j, w'k' as 
empirical parameters are concerned this is of no importance, since adjustements 
made to fit the experiment will automatically adjust them to include the ther­
modynamic effects of the environment even though this is not specified in the 
model. If absolute calculations are made based upon some notions of the values of 
w„p, wf, and wk to be anticipated from molecular considerations, then the 
neglection of the contributions of the environment becomes serious. 

Assumption of weak interactions 

The possibility of an instability for a compressible solid state lattice near an order-
-disorder lambda point was first pointed out by Rice (1954; 1967) who presented 
a very general thermodynamic discussion of the problem. This may serve as 
a physical basis for the estimation of instabilities in DNA too, since DNA is 
unstable in the immediate vicinity of its transition point and undergoes melting. 
Having these idea in mind, we assume a weak coupling between DNA and the 
evironment; i. e., we have already formulated a partition function for such a case in 
the factorized form (Eq. (35)) 

O = Q.,QPQ, (36) 

a crucial feature 

0„ = 

Q. 

Q.= 

;N„ 
'" (N 

•N N 

<£•-"•» 

of our model. 

N„\ 
%/2)\[N„-(N 

(N-
(N*p/2)l[(N-

-Non 

Here, 

. . N 

*P/2)]\q" 

N„)\ 
N„ - (N* 

Ncu 

, /2)]! 

N„! 
\(N,-N 

«** KP 

. . . ) ! ' 

(N-
(N-

t 

-N„) 
N „ - KP)\ 

(37) 

- . , " , - . „ 
1P z 

(37') 

(38) 

It is well'known, although a striking fact in solid state physics, that substances which 
undergo co-operative order-disorder transition usually exhibit anomalous varia­
tions in volume which extend over the same temperature range as the lambda 
spikes in the specific heat. Indeed, in most statistical theories the volume of the 
system is held fixed, and it is assumed that experiments can be carried out at 
constant volume. Since it is the pressure rather than the volume which is usually 
subject to experimental control, the mechanical behaviour of DNA below the 
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denaturation region may be of considerable interest. This conclusion is in agree­
ment with e.g., intrinsic viscosity measurements (Sugalii et al. 1969) influenced by 
the excluded volume effects on the random coil structures in region of melting 
point. It should be noted that of all the thermodynamic functions, it is the 
Helmholtz free energy A that is directly proportional to lnQ( V, T), and that A is 
the thermodynamic potential the natural independent variables of which are those 
of the canonical ensemble. The contribution to the properties of DNA which arise 
from the Q(N„, N, NL„, NL., V, T) term (Eq. (35)) can be deduced empirically from 
experiments performed on DNA considerably below its melting point. We em­
phasize here the contribution to various properties due to the 0(N„, N, /Vc.„, rVc, V, 
T) term which describes the base pairs ordering. In accordance with the above as 
a result of Eq. (36) equation for the Helmholtz free energy can be written as 

A(Na, N, N,„, Ne, V, T)= -kTlnQ„(N,„ Nm, V, 7 ) -
- kTlnQP(Np, Nc((, V, T) - kTlnQ<(K„, Nc, V, T) (39) 

As a result of Eq. (35) all the thermodynamic functions were written as a sum of 
three independent contributions. The contribution to the properties of the system 
which arise from Q„ and Qt. term can be deduced empirically from DNA 
denaturation experiments (Lukashin et al. 1976; Wartell 1977). 

Here, the contribution to various properties due to Qp term which describes 
the base pair ordering or helix form of DNA is emphasized. It is assumed that Qp is 
a function of undimensional parameter ^ = (w^+ waP)y, where wk is the free 
energy of some k member block of B units with k defined by Eq. (17), and it is 
assumed to be a function of the volume V only. This, together with Eq. (35), is 
what we call the assumption of a weak DNA — environment interaction. It should 
be noted that it includes cases of strong interactions, since the effect of the volume 
can be great, the only requirement being that § depends on V. Direct interaction 
between the bases and the environment vibrations may be of importance especially 
in one dimension. Indeed, this would be expected on purely physical grounds, for in 
one dimension a very direct correlation between the base orientation may exist and 
the average distance between the pair of the nearest neighbours. The quantity will, 
however, be a function of the spacing between base pairs. 

Assumping a of weak interaction as formulated above, we note that the 
pressure p and the energy of the system: DNA — environment, by applying of the 
standard statistical mechanical equations, will be given by logarithmic differentia­
tions with respect to V and T, respectively. Thus, 

p =kT(dlnQJdV)Sn.Ni.riT+(dlnQP/d^)Nl,.Ncl>.T(d(wp
k + waP)/dV) + 

+ kT(3/rtQe/3VK,„„e .T=A. + (Qá/QJ)(d(w£+ w„(i)/dV) + pe (40) 

The expressions for the configurational internal energy Ep at a constant 
volume can be written (Huang 1963) as 
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EP = - (wf + W.^)(3/HOP/3§)N / I.N1.(Í. v (41) 

Then, for (40) we have 

P = P„ + P. ~ (Ep/(w£+ waP)(d(wl + w„p)/dV) (42) 

and for the total internal energy of the system E: 

E = kT2(3/nO„/3T)N„.Nt„.v-(0,VO(i)(H'í+w<1/í) + kT2(3/«Ol./3TK„.Nt.v = 
= E„ + EP + EĽ (43) 

where the prime indicates differentiation with respect to | . Now, from Eq. (43) we 
have 

C v = Cv.„ - (QP/QP)2(>v£ + w„„)2/kT2 + C v , 

= Cv.„ + Cv.P + Cv.. (44) 

where the specific heat at a constant volume CV.P is defined as 

Cv.p =k§2(3ZnQ,/3|2)N(I, NeP, V (45) 

Now, by appropriate use of Eqs. (42), (43) and (44) 

(3p/3V)N.NĽ.T = (3p„/3V)N„.N i.„.T-(kT)- ,(0 (VO, i)
2(d(w?+w„ ( i)/dV)2 + 

+ (kT)-(QZ/Q,)(dK+ wafi)/d V)2 + (Oí/Q„)(ď(wg-f- w„(j)/d V2) + 

+ (3pc/3 V) N Ľ „. NC. T = (3p„/3 V)N„. N„,.T + (T/(wi + w„(i)
2. (d( w^ + 

+ »v(Ip)/dV)2Cv./i-(E(</(wi:+ w„( t). (dVe-l- w,<p)/dV2) + (3pc/3VV„.Ni..T 

(46) 

Analogously for ( 3 p / 3 T ) N N t . v we obtain 

(3p/3T)N.N Ľ. v = (3p„/3T)N„.Nc„.v + (0 );/Op)2(w^+w< 1 ( i)/kT2)x 

x(d(wg + w<lP)/dV)-(Q;/Qp)(ws
k + wnP)/kT2)(d(w£+ w„p)/dV) + 

+ (3pe/3T)Ne„.Nc.T = (3p„/3r)N„.Ni.„.v-Cv.„/(w^+w(<p)(d(w^+w„, j)/dV) + 

+ (3pe/3T)N=„.Nc.v (47) 

Instability in DNA 

The aim of this paragraph is to formulate stability conditions under which the 
DNA-environment system becomes unstable. At a given temperature T and 
N = const., Ne = const., the system DNA-environment is stable, at least locally, if 
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the Helmholtz free energy satisfies the condition (32A/3 V 2)N N t .T5=0. For the 
model system considered above, this stability condition requires that before the 
opening of base pairs (N„ = 0) 

- (3pp/3 V)N„. Nc(l. T - ( 3 p e / 3 V)N c / ). Ne. T > 0 (48) 

and after the opening of base—pair and loop formation 

-(3p (,/3V)N„.N c.,.T-(3p ( )/3V)N ( j.N c.T-(3p e/3VK„.N c.TS=0 (48') 

where (3pp/3 V)N/,.Ne(J.T is defined by Eq. (47). Since (3p„/3 V)N.N,.T is related to Ba, 
the isothermal compressibility of the disordered DNA regions — loops, by 

6,,= -(V(3p„/3V)N„.N t.„.T>0 (mechanical stability) (49) 

and (3pe/3V)Ne„.Ne.T is related to Be, the isothermal compressibility of the environ­
ment 

Be = - V(3pe/3 V)Nea. NC. T > 0 (mechanical stability) (50) 

then the stability criterion for our isothermal system in the absence of convection 
may be written as 

1//3L + 1/ft - V(T/(wi+ w,,pf x (d(tvf + w„p)/dV)2Cv. P + 

(51) 
+ VEJ(wí+ w„p) x (ď(wf+ wrxP)/dV2)^0 

Now, if direct correlation between the base pairs and the average distance between 
a pair of the nearest neigbours are taken into account as r, then Eq. (51) can be 
rewritten as 

\IBt, + \IBc-V(TI(Wl+w„p)
2) dwt dr dw„p dr 

• + 

d dwf _djl , A dwqp dr 

dr dV dV dV 

5=0 

(52) 

+ VEp/(wf+wa/ j) 
dr dV dV dr dV dV 

Inequalities such as Eq. (51) are generally referred to as thermodynamic stability 
conditions. We shall not go into further details concerning such thermodynamic 
stability conditions. This theory has been initiated by Gibbs and is presented in 
many textbooks. Let us only mention that including Eq. (51), Ba, Bc>0 (mechani­
cal stability), Cv,p > 0 (thermal stability). Thus the isothermal compressibility and 
the specific heat (at a constant volume) have to be positive definite quantities, and 
the stability condition (51) is dependent on the signs of the coefficients B and Cv,p. 
This statement follows from the general considerations. An absolute physical 
requirement for A(p, §), where g is the density in the thermodynamic limit, as 
a function of ^=W/kT (W=w£+w,xfl), is that it became concave. This is 
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equivalent to the fact that the specific heat is non-negative since is defined by Eq. 
(45). Fortunately, it is true. Another absolute requirement is that A(p, §) is 
convex as a function of p. This is called thermodynamic stability and is equivalent 
to the fact that the compressibility is non-negative, since (compressibility) ' = 3 p / 
/3p = p32A(p, £)/3p2. Now, \IBa and l/jEL. shall in general have a finite positive 
value which is a slowly varying function of temperature, while w's and their 
derivatives with respect to V will be finite non-zero quantities which are indepen­
dent of temperature (or free energies if w's are functions of T in the process) and 
the zero of energy for w's is finite separation. The Ising internal energy Ep will also 
be finite at all temperatures; however the configurational heat capacity at 
a constant volume, Cv,p, is known to approach very large values in the vicinity of 
the melting point. The behavior is the crucial factor. If at the melting point Cv.p 
approaches + °°, there must be an instability near that point unless the components 
of the environment are completely incompressible (in which case, \IB„ = \/Bc= + 
°°). This result depends only on our assumption of a weak coupling in our model of 
DNA. We call attention to the fast rise of the specific heat near the melting point 
(Scheffler and Sturdevant 1969; Albergo et al. 1981) and point out that it is not 
possible to decide by these experiments whether the specific heat of DNA may be 
infinite at all, e. g., for deoxyadenylic acid and deoxythymidylic acid a heat 
capacity difference between intact and broken base pairs of no more than 
84—167 J (mol bp K)"1 was observed calorimetrically. On the other hand, rep­
resentation of heat capacity as a function of tempereture for systems which undergo 
double thermal transition obtained from the derived relations (Cabani et al. 1976) 
are not directly comparable with the experimental results, due to difficulties in 
assigning a correct and meaningful base line to the latter. The closer one comes to 
the melting point, the greater fluctuations in energy, and hence in temperature will 
be. We note further that the fluctuations in temperature will eventually exceed 
a temperature difference in the melting point, \T- Tm\; then the temperature of 
the sample cannot be actually determined. Under such circumstance the specific 
heat (either CV.P or Cp.(i) will be rounded off; however, the fluctuations are the 
smaller the larger the sample, and in the case of DNA it seems possible, at least in 
principle, to take a very large sample, so that the rounding off will occur at a very 
low value of \T— Tm\. The increase in fluctuations, the rise and divergence of the 
thermal capacity seems possible in this case. Data to test this idea are not available. 

The instability of a compressible system DNA-environment in the immediate 
vicinity of its melting point follows directly from Eq. (51). The first two terms are 
positive, the third one negative; about the fourth term we are not sure whether it is 
negligible or not; whether it is positive or negative depends on the sign of w's. It is 
now easy to see how the mechanical instability will cause DNA to undergo 
a spontaneous melting across the unstable region by making the positive terms in 
Eq. (51) larger in magnitude than the negative ones. The larger (d(wk + waP)/dV)2 
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/(vví!+ w„p)
2 and the smaller \IB„ + l/p\. (that is, the greater the intrinsic compressi­

bility of the environment and of a loops), the sooner this effect occurs. The 
parallelism between (3p„/3T)N„. Ne.v and CV.P as noted previously in the ther­
modynamic equations, is brought out and sharpened by Eq. (47). The possibility of 
hysteresis and discontinuities are associated with this melting transition. 

Now, we shall investigate the significance of the fourth term in Eq. (51). 
Assuming V to be proportional V = k r 7 3 , where k > 0 is the proportionality 
constant, with a length hydrogen bonds r, one finds 

d w „ p _ 1 dwgp , 5 3 x 

dV kr2 dr ' dV kr 2 dr 

d2wg_ _ 2 dwf _ J cPwf 
d V 2 " (2kr)2r dr + ( 2 k r 2 ) 2 dr 2 

d2w,,fj_ 2 dw„p 1 d2waP , , . . 

dV2 ( 2 k r ) 2 r dr (2kr 2) 2 dr 2 l ' 

From the derived Eqs. (53), (54), without any detailed analysis necessity of 
considering also the fourth term in Eq. (51) becomes obvious. 
At the equilibrium nuclear configuration, the potential energy is a minimum, and 

(^Lri^Lr0 (55) 

(á2wi\ 1 /ďwf\ _ _ ^ k f 5 f i . 
l d V 2 / v . v „ - ( 2 k r 2 ) 2 l dr 2 ) _ c - ( 2 k r 2 ) k k ( 5 6 ) 

where kk is the valence hydrogen bond force constant, and 

/ d ^ v \ 1 /d2w,„A 1 k , c 7 ^ 
I dV2 )v.v„ (2kr2)2 I dr2 ) r , r c (2krl)2"p P / J 

where k„(l is the helix-coil boundary interaction force constant. 
Under the condition of equilibrium (dT = dV = 0) before the base-pair 

opening (l/Ba=0) Eq. (51) can be rewritten in the form 

1 /Bc - (VE„/w£)(M2kr2)) > 0, kk > 0 , w„(i = 0 (58) 

Since for the bonding state Ep and wf must be negative, the second term in Eq. (51) 
is positive and instability shall therefore not occur; it follows from this that the 
system DNA-environment is thermodynamically stable. 

By definition we say that the reference state is a stable one. In our 
considerations two hydrogen bond potentials may be used: the Lippincott-
-Schroeder potential and that of Morse (Birshtein et al. 1976). 

Let us now consider the compressibility parameter B„. It can be argued 
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that in local disordered base structure the corresponding base pairs of DNA 
must interact and their interaction must depend on the state of the system as 
a whole. This is of great interest because it is closely related to the process of 
uncoiling of DNA in translation and transcription of genetic information. 
Sugalii et. al (1969) pointed out that in the region of the helix-coil transition 
where partially helical DNA is considered to be a sequence of segments either 
in randomly coiled regions or in the helical regions, there have place a 
long-range electrostatic interactions of specific character occur which intensively 
increases the volume of DNA in solution, been done. These long-range interactions 
associated with excluded volume repulsive forces could be evoked by the mutual 
hard penetration of the two approaching during the thermal motion distant parts 
localized along the DNA chain. The true theory of excluded volume for mac-
romolecules with alternation of helical and coil regions has not yet been developed. 
However, it was concluded that the influence of the excluded volume effects on 
mutual penetration of the two coil regions must be extremely large as compared 
with their volume in solution. This is in agreement with the corresponding 
conclusion of the classical theory of Flory (1953). On the other hand, according to 
the majority of computer experiments (Khokhlov 1981) polymeric coils with 
excluded volume are not mutually impenetrable even in the limit of large monomer 
units — they easily penetrate inside each other with the overlap volume of the 
order of the self-volume of a polymeric coil. This is in disagreement with the 
corresponding conclusions stated above. This indicates that the compressibility 
parameter of the disordered regions Bc is dependent on the excluded volume effects 
and may be regarded as a complex quantity. 

Conclusions 

The presented generalized environment-coupled Ising model of DNA obviously 
represents some simplification of helix-coil transition problems. Its properties are 
certainly different from those of real DNA and it is hard to expect more than 
a semi-quantitative of only a qualitative agreement with experimental data. From 
the theoretical point of view, it has the advantage to be exactly solvable. Equations 
were derived which describe the behaviour of the most significant thermodynamic 
variables associated with the transition process brought about by the environment 
(solvent or temperature). The introduction of different w," and wk in the Hill Ising 
model of DNA for differently sized groups of a and B units allows a very 
considerable flexibility of application of the ensuing equations, and it represents 
a generalization over the usual nearest neighbour type assumption. It should also 
be noted that this scheme is not simply equivalent the higher neighbour (stacking-
-type) interactions (Wartell and Benight 1982) since it does not include interac-
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tions between units in neighbouring groups, except for the boundary. A simple 
theoretical analysis made by Wartell and Benight (1982) shows that stacking-type 
interactions extending beyond nearest-neighbour base pairs will make the parame­
ters of the nearetneighbour model appear to change as the average loop size 
changes. This must be beared in mind also in considering of the transition 
parameters in our model of DNA. 

Inevitably, DNA is subject to perturbation of various kinds. These can be 
either external excitations arising from a random or a systematic variation of 
the environmental conditions, or internal fluctuations generated by the system 
itself and as a result of molecular interactions and random thermal motion of 
the components. As a result, DNA deviates continuously — although usually 
weakly — from the macroscopic behaviour described by the equations of the 
thermodynamic macrovariables. In summary, an order-disorder co-operative 
transition is to be expected in DNA near the melting point unless some special 
kind of strong environment (Watson-Crick hydrogen bonds) coupling is invo­
ked. The observable effects of this instability should be large only when (i) the 
environment is quite compressible (Bc, and Ba are large), and (ii) the Wat­
son—Crick hydrogen bonds are a sensitive function of distance ((dwk/dr) 
(dr/dV), (dw,(f!/dr)(dr/dV) are large). For a real physical or physiological systems, 
l//3t. and l/j3„ are finite at all temperatures, including melting point, and according 
to our model, it is therefore finite at all temperatures. The method presented here 
provides a full picture of all the known phenomenology of DNA, once these 
thermodynamic parameters are determined. 

Also it is a means allowing the comparison of experimental data obtained from 
different kinds of experiments, as well as a tool to disclose relations between 
experimental data and transition parameters determining the instability in DNA. 
The theory of instabilities in DNA is entirely based on the equilibrium ther­
modynamics and statistical mechanics. In principle our approach may be also 
extended to non-equilibrium situations in agreement with the statistical meaning of 
stability coupled with the statistical macroscopic fluctuation theory. 
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