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Stabilization of Conducting Pores in BLM by Electric Current 
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institute of Electrochemistry, Academy of Sciences of the USSR, Leninský pr. 31, 117071 Moscow 
V-71, USSR 

Abstract. The free energy of a membrane system as a function of the pore size has 
been calculated. It is shown that consideration of finite conductivity of a pore leads 
to an increase in the height of the energy barrier and to an increase in the calculated 
lifetime of the membrane in the field. It is also shown that there exists a critical 
value of parameter s =aô/y below which, in some intermediate voltage region, 
splitting of the energy barrier occurs. The condition, which is practically always 
valid, of the smallness of the input resistance compared with the pore resistance 
with minimum sizes of the pore is sufficient for the existence of this effect. The 
relation between the heights of the barriers depends upon parameter s and upon 
voltage, in which case, with increasing s and co, the height of the second barrier 
decreases more rapidly than that of the first barrier. A curve s (co) is plotted which 
limits the region of s and (o values where the splitting effect takes place. It is shown 
that this curve has a cusp singularity. This feature of the curve s (co) is of the same 
degree of generality as the energy barrier splitting effect itself. 
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Introduction 

Various approaches to the study of stability of bimolecular membranes are based, 
as a rule, on the idea about structural defects of membranes. Such defects are 
usually represented as through hydrophilic pores. The dependence of free energy 
of a system on the size of a defect, calculated differently in various concrete models 
(Chizmadzhev et al. 1979; Derjagin and Gutop 1962; Kashchiev and Exerova 
1980; de Vries 1958), is of great importance in kinetic stability theory (Zeldovich 
1942; Lifshits and Pitayevsky 1979). In the work of Pastushenko et al. (1979a) 
devoted to the theory of electrical breakdown of bilayer lipid membranes (BLM) 
the free energy was calculated under the assumption of low conductance of defects. 
The obtained dependence of free energy on the defect radius was described by 
a curve with a maximum, in which case the maximum point corresponded to the 
critical size of a defect. Generally speaking, with sufficiently large radii of a pore its 
conductance cannot be considered small. Consideration of this circumstance leads, 
as will be shown below, to a considerable and sometimes essential change in the 
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free energy of a system depending upon the defect radius. In particular, the 
appearance of a metastable pore becomes possible (at corresponding values of 
surface and linear tension), which corresponds to an intermediate minimum on the 
free energy curve. 

Formulation of the Problem 

Consider a membrane on both sides of which there is a symmetric electrolyte 
solution (Fig. 1). A structural defect will be represented as a cylindrical through 
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u 

Fig. 1. Diagram of a membrane system in the presence of a cylindrical pore of radius a. The voltage 
across the membrane is U = 2<p0 

pore of radius a. The material of the membrane is considered to be an insulator 
with dielectric permittivity em. The specific conductance and dielectric constant of 
the electrolyte solution are x and es, respectively. A potential difference 2cp0 is 
applied to the membrane system so that the electric potential satisfies the following 
conditions: 

<p(r, z )-»<po, (r2 + z 2 ^ ° ° , z > ô / 2 ) ; 

cp(r,z)-+-cpo, (r2 + z 2 - * ° ° , z < - < 5 / 2 ) . (1) 

Here r and z are cylindrical coordinates (Fig. 1). The symmetry of the system along 
with conditions (1) also requires the following condition to be fulfilled: 

<p(r,0) = 0 . (2) 

This enables us to confine consideration to an electric field in the region z > 0 . We 
shall suppose that the electrolyte concentration is sufficiently high so that the 
thickness of the diffuse layer (the Debye length) is small compared with the 
membrane thickness. Then in the region z><5/2 the potential distribution is 
described by the Laplace equation 

Acp = 0 . (3) 
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In passing over into the pore the situation is complicated by a number of 
circumstances: the presence of image forces and their dependence on the radial 
coordinate, the presence of mouth regions in the pore which are affected by the 
dependence of image forces on coordinate z and, finally, the presence of a strong 
electric field which leads to a nonlinear dependence of the pore conductance on the 
potential difference across the mouth regions. For this reason the problem of an 
electric field within a pore deserves special consideration. In the present paper the 
following approach will be used. We assume that the mouth regions of the pore are 
equipotential, i.e. 

cp í r, 2) =cpa= const, (r^a) . (4) 

We also assume that the standard chemical potential of ions within the pore is 
independent of coordinates r and z • Then it can be shown (Markin and Chizmad­
zhev 1974) that in the constant field approximation the electrolyte within the pore 
should be regarded as an ohmic conductor with resistance 

R'=^eXP(é) (5) 

Here n" is the standard chemical potential of ions within the pore and kT is the 
characteristic thermal energy of a particle. For estimating the n°, we shall make use 
of the result of the work by Parsegian (1969): 

M° = — P(-). (6) 

Here P {ejes) is the familiar function (Parsegian 1969). Let us define, at last, the 
boundary conditions for Eq. (3). In addition to conditions (1) and (4), one should 
consider as the boundary condition the absence of the normal current component 
on the membrane surface: 

|f = 0 (,>.„-f). (7) 

Within the nonconducting material of the membrane the potential distribution can 
be found by solving Eq. (3) at the given value of the potential at the boundary of 
the region. To this end use is made of condition (2) and of the solution of the 
problem determined by Eq. (3) with additional conditions (1), (4) and (7). Our 
task is to calculate the free energy of the system as a function of the pore radius. 
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Results 
We write the free energy of the system as (Pastushenko et al. 1979a): 

F = 2jxya - naa2 + Fe, (8) 

Here a and y are the coefficients of surface and linear tension, respectively, and Fe( 

is the part of free energy, due to the electric field. First calculate the change in free 
energy, resulting from the application of a field of infinitesimal deformations, on 
the medium, described by vector /. This change has the following form 

<-\i< dFel=^ I E2 grád e - g r ad (E2o — dV, 

(dV = 2nrdrdz) . (9) 

Here E is the electric field strength, p the density of the medium, and e is the 
dielectric constant of the medium as a function of space coordinates. The partial 

3e 
derivative — is calculated at constant temperature T. If the compressibility of 

dg 
dielectrics in neglected, then, as can be shown, the second term in Eq. (9) becomes 
zero. The field of deformations will be chosen so that it corresponds to the radial 
displacement of the cylindrical wall of the pore by a value da. Then the required 
change in free energy, as Eq. (9) suggests, has the form 

dFe, = -J iaô (es - e m ) E\da . (10) 
Here E„ is the electric field strength on the wall of the pore 

E . = ^ . (11) 
o 

The potential <pa occurring in this expression depends on the current I through the 
pore as follows: 

<P«=2 I Rp- (12) 

The value of the current can be found using the results of the work of Newman 
(1966), where the problem (3), (1), (4), (7) is solved 

Í = (cpo-q0a)4ra . (13) 

Eqs. (12) and (13) yield the following expression for the required potential <p0: 

Here A represents the ratio of the input resistance R, = -— to the resistance of the 
2xa 

pore Rp: 
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X=2ôeXp(-kŤ 
(15) 

Integrating Eq. (10), we obtain the final expression for the free energy of the 
system, taking into account the flow of electric current: 

F = 2 Jtya - naa 2--r-(e: -em)cp2
0 

Jo 

a da 
(1+A) 2 (16) 

Discussion 

As is evident from the derivation, the electric term in the free energy (Eq. (16)) 
describes the work performed by the electric field with varying radius of the pore. It 
appears from Eq. (10) that this work can be interpreted directly as a result of the 
effect of a force applied radially to the cylindrical wall of the pore. As is known, 
a force at the interface between two dielectrics in the presence of an electric field is 
directed towards the dielectric with the smaller dielectric constant, calculations 
showing that the work of this force is identical with expression (10). 

It is easy to see that at A = 0, Eq. (16) is the same as the result of the work by 
Pastushenko et al. (1979a) in which the influence of the pore conductance was 
ignored. It is clear that for A > 0 the free energy of the system is higher than for 
A = 0. This means that neglect of the pore conductance leads to an underestimated 
value of the energy barrier surmounted by the pore in the course of evolution. 

f 
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Fig. 2. The effect of the pore conductance on the electric contribution to the free energy of the system. 
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Correspondingly, the lifetime of the membrane turn out to be underestimated. 
For this reason it seems to be very important to find the region of parameters 
where the influence of conductance has to be taken into account. To this end, 
consider the electric contribution to the free energy as a function of two 
variables: Fel =Ft,{a,X) and write the relation 

'«>-£§& , 1 7 > 
Here £ = — is the dimensionless radius of the pore. The quantity / is a convenient 

characteristic of discrepancy between the two versions of the theory. Fig. 2 shows 
the dependence / ( § ) at em = 2 , /cT = 4 x 10~21 J. As was expected earlier (Pas­
tushenko et al. 1979a), at sufficiently small sizes of the pore, practically when 
§ <0.5 , it is safe to ignore the effect of conductance on the pore energy. However, 
the value of the critical radius corresponding to the maximum energy is also 
a function of parameters y and a. Therefore, the final solution to the problem of 
the role of pore conductance can be found by analyzing the behaviour of the critical 
radius which is determined from the following equation for §: 

l - s Š = c o g ( Š ) , (18) 

where 

0(5) = [ l + A ( Š ) ľ 

oô V ( e , - E „ ) „ _ . S= , 0)= ^r L , U = 2tp„. y 2y 
, 2 

eJcT 
hence, 

At the above-mentioned values of em and kT we have , ^ PÍ — 1 T Ä 1 and, 

A(Š) = f š e x p ( - | ) . (19) 

It will be shown that at sufficiently small values of s Eq. (18) has three roots, which 
corresponds to the splitting of the energy barrier. The possibility of occurence of 
this effect was discussed previously in the work of Abidor et al. (1979). Naturally, 
in the theory of electric breakdown, the appearance of an additional energy barrier 
involves the need of taking into account an additional stage of evolution of defects 
(Abidor et al. 1979 ; Pastushenko et al. 1979b; Arakelyan 1980). Let us consider 
in more detail at which values of s and co there occurs barrier splitting which arises 
for the first time when the condition, additional to Eq. (18), is fulfilled: 

3 2F 
w=0 (20) 
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Differentiating Eq. (18) with respect to £, we derive an additional equation for 
determining parameters s and co: 

»=-»%• (2D 

Functions 

-f^ílnfíf)]"1 <23> 
are the solution of the system of Eqs. (18) and (21). Thus, barrier splitting occurs 
on the curve s (co) given parametrically by equations (22)—(23). Since s >0, it 
follows from Eq. (21) that the range of variation in parameter £ is determined from 
the condition 

%<0. (24) 

We thus obtain 

S > g i > 0 , (25) 

where £•[ is the maximum point g (g): 

= 0 . (26) dg 
díš 

Differentiating Eq. (22), we have 

d^-03 sďf ( 2 7 ) 

It thus appears that parameter co (£) passes through a minimum at a point £j2 which 
is the point of inflection of the function g (§). Similarly, from the expression 

ds 2d
2g , ' 

M=-9(°dV ( 2 8 > 
we deduce that at the point %2 parameter s reaches its maximum value. Combining 
Eqs. (27) and (28) we get 

£-!• <»> 
This signifies that over the whole curve s (co) 
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ds_ 
do < 0 . (30) 

Furthermore, since the right side of Eq. (29) has no singularities at the point | 2 , it is 
clear that the curve 5 (co ) at the minimum value of co = co * and the maximum value 
of s = 5 * is formed by merging two curves. Thus, on the curve s ((o) there appears 
a singularity of the cusp type. Fig. 3 shows a curve of this type plotted from 

Fig. 3. The boundary between the regions with one and two energy barriers. The values of the 
parameters s« = 0.33 and Q)*= 1.666 correspond to the cusp singularity of the curve s (to). 

Eqs. (21) and (22). In effect, the plotted curve limits the region in which the 
influence of the pore conductance is most significant. Clearly, when s > s „, there is 
only one maximum, the influence of conductance decreasing with increasing s. 

Consider the dynamics of the energy profile as a function of voltage for s <s#. 

Fig. 4. The free energy of the system against the dimensionless radius of the pore f. With increasing 
number of the curve the voltage across the membrane increases. 
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Fig. 4 presents three curves plotted at s = 0.2 <s* = 0.33. Curves 1 and 3 were 
plotted with values of a) such that s (co) = 0.2. Curve 2 corresponds to the 
intermediate value of co. It appears even from this figure, that as the voltage 
increases the height of the second barrier decreases. It can be shown that this is 
valid for all s <s*. 

It is of interest to consider the relation between the heights of the first and 
second barrier. Since the height of the second barrier is maximal on the left branch 
of the curve s (co), it is sufficient to consider the relation between the heights on this 
branch. One can readily see that at s = s + the height of the second barrier is zero, 
and with decreasing s the height of the second barrier increases. As s—>0, this 
height increases as l / (2s) whereas the height of the first barrier tends to a constant 
equal to 

F(£0 = 2^0^,-co„J j-j- xdx 
+ k(x)]2 (31) 

Thus, at sufficiently small values of s the second barrier can be arbitrarily large 
compared with the first barrier. 

It is worth noting that when s = s * and co = co * the curvature of the barrier at 
the maximum point is zero. This example indicates that in the general case it is not 
enough to describe the barrier by its curvature alone at the maximum point, as was 
done, for example, by Derjagin and Prokhorov (1980). 

We discuss, finally, the question as to what extent the energy barrier splitting 
effect is an off-model result. As follows from the derivation, the splitting effect 
results from the occurrence of a maximum of function g (£). The nonmonotony of 

g (§) is in turn ensured if at small sizes of the pore ~TJ:>0, i.e. if the following 

condition holds: 

1 + * > 2 | | | . (32) 

Obviously, this condition will be fulfilled practically always at sufficiently small Ž-. 
In other words, it is required that, with small radii of the pore, parameter A should 
be sufficiently small, which seems to be valid irrespective of the assumption of the 
cylindrical shape of the pore and even of the effect of image forces which prevent 
ions from penetrating the pore. Thus, the use of Eq. (6), suitable for the case of 
a long pore filled with pure dielectric, is only corrective in character and does not 
affect the conclusion about the existence of the splitting effect. 
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